The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The Linear Chain System consists of M chain reactions with M+1 species as follows:
S_1 --c1--> S_2
S_2 --c2--> S_3
...
S_M --cM--> S_(M+1)
Load package
library(GillespieSSA)
Define parameters
<- c(c = 1) # Rate parameter
parms <- 50 # Number of chain reactions
M <- "Linear Chain System" # Simulation name
simName <- 5 # Final time tf
Define initial state vector
<- c(1000, rep(0, M))
x0 names(x0) <- paste0("x", seq_len(M+1))
Define state-change matrix
<- matrix(rep(0, M * (M+1)), ncol = M)
nu cbind(seq_len(M), seq_len(M))] <- -1
nu[cbind(seq_len(M)+1, seq_len(M))] <- 1 nu[
Define propensity functions
<- paste0("c*x", seq_len(M)) a
Run simulations with the Direct method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.d(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Explict tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.etl(tau = .1),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Binomial tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.btl(f = 50),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Optimized tau-leap method
set.seed(1)
<- ssa(
out x0 = x0,
a = a,
nu = nu,
parms = parms,
tf = tf,
method = ssa.otl(),
simName = simName,
verbose = FALSE,
consoleInterval = 1
) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.