The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Small count frequency table suppression

Introduction

The GaussSuppression package contains several easy-to-use wrapper functions and in this vignette we will look at the SuppressSmallCounts function. In this function, small frequencies are primary suppressed. Then, as always in this package, secondary suppression is performed using the Gauss method.

We begin by creating datasets to be used below. The first examples are based on dataset_a, which has six rows.

library(GaussSuppression)
dataset <- SSBtoolsData("example1")
dataset_a <- dataset[dataset$year == "2014", -4]
dataset_b <- dataset[dataset$year == "2015", -4]
dataset_a
#>     age      geo    eu freq
#> 1 young    Spain    EU    5
#> 2 young  Iceland nonEU    2
#> 3 young Portugal    EU    0
#> 4   old    Spain    EU    6
#> 5   old  Iceland nonEU    3
#> 6   old Portugal    EU    4

An initial basic example

In the function description (?SuppressSmallCounts), the only visible parameter is maxN in addition to the parameters considered in the define-tables vignette. In the first example, we use maxN = 1 which means that zeros and ones are primary suppressed.

SuppressSmallCounts(data = dataset_a, 
                    dimVar = c("age", "geo"), 
                    freqVar = "freq", 
                    maxN = 1)
#> [extend0 6*3->6*3]
#> GaussSuppression_anySum: ...........
#>      age      geo freq primary suppressed
#> 1  Total    Total   20   FALSE      FALSE
#> 2  Total  Iceland    5   FALSE      FALSE
#> 3  Total Portugal    4   FALSE      FALSE
#> 4  Total    Spain   11   FALSE      FALSE
#> 5    old    Total   13   FALSE      FALSE
#> 6    old  Iceland    3   FALSE       TRUE
#> 7    old Portugal    4   FALSE       TRUE
#> 8    old    Spain    6   FALSE      FALSE
#> 9  young    Total    7   FALSE      FALSE
#> 10 young  Iceland    2   FALSE       TRUE
#> 11 young Portugal    0    TRUE       TRUE
#> 12 young    Spain    5   FALSE      FALSE

A formatted version of this output is given in Table 1 below. Primary suppressed cells are underlined and labeled in red, while the secondary suppressed cells are labeled in purple.


Table 1: dimVar = c("age", "geo"), maxN = 1

age Iceland Portugal Spain Total
young 2 0 5 7
old 3 4 6 13
Total 5 4 11 20


The same output is obtained if microdata is sent as input as illustrated by de code below.

microdata_a <- SSBtools::MakeMicro(dataset_a, "freq")[-4]
output <- SuppressSmallCounts(data = microdata_a, 
                              dimVar = c("age", "geo"), 
                              maxN = 1)
#> [preAggregate 20*3->5*3]
#> [extend0 5*3->6*3]
#> GaussSuppression_anySum: ...........

A related point is that the third row of the table can be omitted (data = dataset_a[-3, ]) since the frequency is zero. When the frequency is zero, there is no underlying microdata. Later in this vignette, we address scenarios where the inclusion of zeros may be important.

An hierarchical table

A more advanced example is obtained by including the variable “eu”.

SuppressSmallCounts(data = dataset_a, 
                    dimVar = c("age", "geo", "eu"), 
                    freqVar = "freq", 
                    maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .............
#>      age      geo freq primary suppressed
#> 1  Total    Total   20   FALSE      FALSE
#> 2  Total       EU   15   FALSE      FALSE
#> 3  Total    nonEU    5   FALSE      FALSE
#> 4  Total  Iceland    5   FALSE      FALSE
#> 5  Total Portugal    4   FALSE      FALSE
#> 6  Total    Spain   11   FALSE      FALSE
#> 7    old    Total   13   FALSE      FALSE
#> 8    old       EU   10   FALSE       TRUE
#> 9    old    nonEU    3   FALSE       TRUE
#> 10   old  Iceland    3   FALSE       TRUE
#> 11   old Portugal    4   FALSE       TRUE
#> 12   old    Spain    6   FALSE      FALSE
#> 13 young    Total    7   FALSE      FALSE
#> 14 young       EU    5   FALSE       TRUE
#> 15 young    nonEU    2    TRUE       TRUE
#> 16 young  Iceland    2    TRUE       TRUE
#> 17 young Portugal    0    TRUE       TRUE
#> 18 young    Spain    5   FALSE      FALSE

A formatted version of this output:


Table 2: dimVar = c("age", "geo", "eu"), maxN = 2

age Iceland Portugal Spain nonEU EU Total
young 2 0 5 2 5 7
old 3 4 6 3 10 13
Total 5 4 11 5 15 20


As described in the define-tables vignette hierarchies are here detected automatically. The same output is obtained if we first generate hierarchies by:

dimlists <- SSBtools::FindDimLists(dataset_a[c("age", "geo", "eu")])
dimlists
#> $age
#>   levels codes
#> 1      @ Total
#> 2     @@   old
#> 3     @@ young
#> 
#> $geo
#>   levels    codes
#> 1      @    Total
#> 2     @@       EU
#> 3    @@@ Portugal
#> 4    @@@    Spain
#> 5     @@    nonEU
#> 6    @@@  Iceland

And thereafter run SuppressSmallCounts with these hierarchies as input:

SuppressSmallCounts(data = dataset_a[c("age", "geo", "freq")], 
                    hierarchies = dimlists, 
                    freqVar = "freq", 
                    maxN = 2)

Using the formula interface

Using the formula interface is one way to achieve fewer cells in the output:

SuppressSmallCounts(data = dataset_a, 
                    formula = ~age:eu + geo, 
                    freqVar = "freq", 
                    maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .......
#>     age      geo freq primary suppressed
#> 1 Total    Total   20   FALSE      FALSE
#> 2 Total  Iceland    5   FALSE      FALSE
#> 3 Total Portugal    4   FALSE      FALSE
#> 4 Total    Spain   11   FALSE      FALSE
#> 5   old       EU   10   FALSE      FALSE
#> 6   old    nonEU    3   FALSE       TRUE
#> 7 young       EU    5   FALSE      FALSE
#> 8 young    nonEU    2    TRUE       TRUE

In the formatted version of this output, blank cells indicate that they are not included in the output.


Table 3: formula = ~age:eu + geo, maxN = 2

age Iceland Portugal Spain nonEU EU Total
young 2 5
old 3 10
Total 5 4 11 20


About suppression of zeros

By default, zeros are suppressed in order to protect against attribute disclosure in frequency tables. However, there are exceptions. Below are several options for handling exceptions.

Zeros not suppressed

One option is to use protectZeros = FALSE.

SuppressSmallCounts(data = dataset_a, 
                    dimVar = c("age", "geo", "eu"),  
                    freqVar = "freq", 
                    maxN = 4,
                    protectZeros = FALSE)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: ...........
#>      age      geo freq primary suppressed
#> 1  Total    Total   20   FALSE      FALSE
#> 2  Total       EU   15   FALSE      FALSE
#> 3  Total    nonEU    5   FALSE      FALSE
#> 4  Total  Iceland    5   FALSE      FALSE
#> 5  Total Portugal    4    TRUE       TRUE
#> 6  Total    Spain   11   FALSE       TRUE
#> 7    old    Total   13   FALSE      FALSE
#> 8    old       EU   10   FALSE       TRUE
#> 9    old    nonEU    3    TRUE       TRUE
#> 10   old  Iceland    3    TRUE       TRUE
#> 11   old Portugal    4    TRUE       TRUE
#> 12   old    Spain    6   FALSE      FALSE
#> 13 young    Total    7   FALSE      FALSE
#> 14 young       EU    5   FALSE       TRUE
#> 15 young    nonEU    2    TRUE       TRUE
#> 16 young  Iceland    2    TRUE       TRUE
#> 17 young Portugal    0   FALSE      FALSE
#> 18 young    Spain    5   FALSE       TRUE

Table 4: dimVar = c("age", "geo", "eu"), maxN = 4, protectZeros = FALSE

age Iceland Portugal Spain nonEU EU Total
young 2 0 5 2 5 7
old 3 4 6 3 10 13
Total 5 4 11 5 15 20


Another possibility that gives the same output is:

output <- SuppressSmallCounts(data = dataset_a[-3, ], 
                              dimVar = c("age", "geo", "eu"),  
                              freqVar = "freq", 
                              maxN = 4,
                              extend0 = FALSE, 
                              structuralEmpty = TRUE)
#> GaussSuppression_anySum: ..........

Here the zero-frequency row is omitted in the input. By default, the table is automatically extended so that the Gauss algorithm handles zeros correctly. When this is turned off (extend0 = FALSE), a warning with the following text will appear: “Suppressed cells with empty input will not be protected. Extend input data with zeros?”. However, with structuralEmpty = TRUE, the “empty zeros” are assumed to represent structural zeros that must not be suppressed. As exemplified a little further below, one can thus handle data with both structural and non-structural zeros.

Secondary suppressed zeros

We can combine protectZeros = FALSE with secondaryZeros = TRUE.

SuppressSmallCounts(data = dataset_a, 
                    dimVar = c("age", "geo", "eu"),  
                    freqVar = "freq", 
                    maxN = 3,
                    protectZeros = FALSE, 
                    secondaryZeros = TRUE)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySumNOTprimary: .............
#>      age      geo freq primary suppressed
#> 1  Total    Total   20   FALSE      FALSE
#> 2  Total       EU   15   FALSE      FALSE
#> 3  Total    nonEU    5   FALSE      FALSE
#> 4  Total  Iceland    5   FALSE      FALSE
#> 5  Total Portugal    4   FALSE      FALSE
#> 6  Total    Spain   11   FALSE      FALSE
#> 7    old    Total   13   FALSE      FALSE
#> 8    old       EU   10   FALSE       TRUE
#> 9    old    nonEU    3    TRUE       TRUE
#> 10   old  Iceland    3    TRUE       TRUE
#> 11   old Portugal    4   FALSE       TRUE
#> 12   old    Spain    6   FALSE      FALSE
#> 13 young    Total    7   FALSE      FALSE
#> 14 young       EU    5   FALSE       TRUE
#> 15 young    nonEU    2    TRUE       TRUE
#> 16 young  Iceland    2    TRUE       TRUE
#> 17 young Portugal    0   FALSE       TRUE
#> 18 young    Spain    5   FALSE      FALSE

Table 5: dimVar = c("age", "geo", "eu"), maxN = 3,
protectZeros = FALSE, secondaryZeros = TRUE

age Iceland Portugal Spain nonEU EU Total
young 2 0 5 2 5 7
old 3 4 6 3 10 13
Total 5 4 11 5 15 20


Both structural and non-structural zeros

The example below uses dataset_b, which has two zeros.

  dataset_b
#>      age      geo    eu freq
#> 7  young    Spain    EU    5
#> 8  young  Iceland nonEU    0
#> 9  young Portugal    EU    0
#> 10   old    Spain    EU    6
#> 11   old  Iceland nonEU    3
#> 12   old Portugal    EU    4

Let’s assume that the first zero is considered as a structural zero. In order to account for this characteristic, we will exclude this particular zero and retain the other. As a general rule, we will exclude all structural zeros.

SuppressSmallCounts(data = dataset_b[-2,  ], 
                    dimVar = c("age", "geo", "eu"),  
                    freqVar = "freq", 
                    maxN = 2,
                    extend0 = FALSE, 
                    structuralEmpty = TRUE)
#> GaussSuppression_anySum: .............
#>      age      geo freq primary suppressed
#> 1  Total    Total   18   FALSE      FALSE
#> 2  Total       EU   15   FALSE      FALSE
#> 3  Total    nonEU    3   FALSE      FALSE
#> 4  Total  Iceland    3   FALSE      FALSE
#> 5  Total Portugal    4   FALSE      FALSE
#> 6  Total    Spain   11   FALSE      FALSE
#> 7    old    Total   13   FALSE      FALSE
#> 8    old       EU   10   FALSE      FALSE
#> 9    old    nonEU    3   FALSE      FALSE
#> 10   old  Iceland    3   FALSE      FALSE
#> 11   old Portugal    4   FALSE       TRUE
#> 12   old    Spain    6   FALSE       TRUE
#> 13 young    Total    5   FALSE      FALSE
#> 14 young       EU    5   FALSE      FALSE
#> 15 young    nonEU    0   FALSE      FALSE
#> 16 young  Iceland    0   FALSE      FALSE
#> 17 young Portugal    0    TRUE       TRUE
#> 18 young    Spain    5   FALSE       TRUE

Table 6: dimVar = c("age", "geo", "eu"), maxN = 2,
extend0 = FALSE, structuralEmpty = TRUE

age Iceland Portugal Spain nonEU EU Total
young 0 0 5 0 5 5
old 3 4 6 3 10 13
Total 3 4 11 3 15 18


Now, the data has been processed correctly, the structural zeros will be published while the other zeros are suppressed.

To get the same output with the formula interface, we can use the following code:

SuppressSmallCounts(data = dataset_b[-2,  ], 
                    formula = ~age * (geo + eu),  
                    freqVar = "freq", 
                    maxN = 2,
                    extend0 = FALSE, 
                    structuralEmpty = TRUE,
                    removeEmpty = FALSE)

Please note that in order to include empty cells in the output, you need to set the removeEmpty parameter to FALSE. By default, this parameter is set to TRUE when using the formula interface.

The problem of singletons and zeros

The problem of zeros

When using the standard suppression technique on table dataset_b, many cells are suppressed.

SuppressSmallCounts(data = dataset_b, 
                    dimVar = c("age", "geo", "eu"),  
                    freqVar = "freq", 
                    maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .............
#>      age      geo freq primary suppressed
#> 1  Total    Total   18   FALSE      FALSE
#> 2  Total       EU   15   FALSE      FALSE
#> 3  Total    nonEU    3   FALSE      FALSE
#> 4  Total  Iceland    3   FALSE      FALSE
#> 5  Total Portugal    4   FALSE      FALSE
#> 6  Total    Spain   11   FALSE      FALSE
#> 7    old    Total   13   FALSE      FALSE
#> 8    old       EU   10   FALSE       TRUE
#> 9    old    nonEU    3   FALSE       TRUE
#> 10   old  Iceland    3   FALSE       TRUE
#> 11   old Portugal    4   FALSE       TRUE
#> 12   old    Spain    6   FALSE       TRUE
#> 13 young    Total    5   FALSE      FALSE
#> 14 young       EU    5   FALSE       TRUE
#> 15 young    nonEU    0    TRUE       TRUE
#> 16 young  Iceland    0    TRUE       TRUE
#> 17 young Portugal    0    TRUE       TRUE
#> 18 young    Spain    5   FALSE       TRUE

Table 7: dimVar = c("age", "geo", "eu"), maxN = 2

age Iceland Portugal Spain nonEU EU Total
young 0 0 5 0 5 5
old 3 4 6 3 10 13
Total 3 4 11 3 15 18


The reason for the Spain suppressions is to prevent the disclosure of zeros, which would be easily revealed if young:Spain is not suppressed. In that case the sum of young:Iceland and young:Portugal can easily be calculated to be zero. Since negative frequencies are not possible, the only possibility is two zeros.

The handling of this problem is standard, but it can be turned off by singletonMethod = "none".

The problem of singletons

This problem occurs when protectZeros = FALSE and secondaryZeros = FALSE (default). We now also look at a larger example that uses dataset which has 18 rows.

output <- SuppressSmallCounts(data = dataset, 
                              formula = ~age*geo*year + eu*year,  
                              freqVar = "freq", 
                              maxN = 1, 
                              protectZeros = FALSE)
#> [extend0 18*5->18*5]
#> GaussSuppression_anySum: .................................................
head(output)
#>     age      geo  year freq primary suppressed
#> 1 Total    Total Total   59   FALSE      FALSE
#> 2   old    Total Total   38   FALSE      FALSE
#> 3 young    Total Total   21   FALSE      FALSE
#> 4 Total  Iceland Total   13   FALSE      FALSE
#> 5 Total Portugal Total   12   FALSE      FALSE
#> 6 Total    Spain Total   34   FALSE      FALSE

Table 8: formula = ~age*geo*year + eu*year, maxN = 1, protectZeros = FALSE

age year Iceland Portugal Spain nonEU EU Total
young 2014 2 0 5 7
young 2015 0 0 5 5
young 2016 1 1 7 9
young Total 3 1 17 21
old 2014 3 4 6 13
old 2015 3 4 6 13
old 2016 4 3 5 12
old Total 10 11 17 38
Total 2014 5 4 11 5 15 20
Total 2015 3 4 11 3 15 18
Total 2016 5 4 12 5 16 21
Total Total 13 12 34 13 46 59


In this output, young:2016:Spain is suppressed due to the standard handling of the singleton problem.

However, by using singletonMethod = "none" in this case, young:2016:Spain will not be suppressed. Then the sum of young:2016:Iceland and young:2016:Portugal can easily be calculated to be two. Since zeros are never suppressed, the only possible values for these two cells are two ones.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.