The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

GaSP: Train and Apply a Gaussian Stochastic Process Model

Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood or maximum a posteriori (MAP) estimation, run model diagnostics, and make predictions, following Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", Statistical Science, <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and visualize low-order effects, following Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", <doi:10.1007/0-387-28014-6_14>.

Version: 1.0.6
Depends: R (≥ 3.5.0)
Suggests: markdown, rmarkdown, knitr, testthat
Published: 2024-06-27
DOI: 10.32614/CRAN.package.GaSP
Author: William J. Welch ORCID iD [aut, cre, cph], Yilin Yang ORCID iD [aut]
Maintainer: William J. Welch <will at stat.ubc.ca>
License: GPL-3
NeedsCompilation: yes
Materials: README
CRAN checks: GaSP results

Documentation:

Reference manual: GaSP.pdf
Vignettes: GaSP: Train and Apply a Gaussian Stochastic Process Model

Downloads:

Package source: GaSP_1.0.6.tar.gz
Windows binaries: r-devel: GaSP_1.0.6.zip, r-release: GaSP_1.0.6.zip, r-oldrel: GaSP_1.0.6.zip
macOS binaries: r-release (arm64): GaSP_1.0.6.tgz, r-oldrel (arm64): GaSP_1.0.6.tgz, r-release (x86_64): GaSP_1.0.6.tgz, r-oldrel (x86_64): GaSP_1.0.6.tgz
Old sources: GaSP archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GaSP to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.