The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Global Sensitivity Analysis Tool
Version: 1.0.0
Maintainer: Camila Garcia-Echeverri <cagarciae@unal.edu.co>
Description: A tool to sensitivity analysis using SOBOL (Sobol, 1993) and AMA (Dell'Oca et al. 2017 <doi:10.5194/hess-21-6219-2017>) indices. It allows to identify the most sensitive parameter or parameters of a model.
Depends: R (≥ 3.4)
Imports: stats, e1071, utils
Suggests: knitr, rmarkdown
License: GPL-2
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.0
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2020-07-09 20:41:30 UTC; camil
Author: Camila Garcia-Echeverri ORCID iD [aut, cre], Maria Arenas-Bautista ORCID iD [cot], Leonardo Donado ORCID iD [cot]
Repository: CRAN
Date/Publication: 2020-07-10 09:40:03 UTC

AMA indices

Description

This function calculates the AMA indices: AMAE, AMAV, AMAV and AMAK.

Usage

AMA(data_Bstat, CM, pp_names, steps = 100)

Arguments

data_Bstat

a data frame of dimensions t x 6, here t is the number of temporary steps and each column corresponds to a statistical measure: mean, variance, skewness, kurtosis and excess kurtosis.

CM

A list of arrays, each array corresponds to the conditional moments calculated with the mean, variance, skewness, kurtosis. Each array has dimensions of steps, t, p.

pp_names

vector that contains the names of the parameters (pp)

steps

number of divisions of the parametric range

Value

A list of four matrices, which corresponds to AMAE, AMAV, AMAR and AMAK indices. Each matrix has dimensions of t x pp.

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>
Maria Cristina Areas-Bautista <mcarenasb@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

References

Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrology and Earth System Sciences, 21(12), 6219–6234. https://doi.org/10.5194/hess-21-6219-2017

Examples

data("data_Bstat", "CM", "pp_names")
AMA_indices <- AMA(data_Bstat, CM, pp_names, steps= 15)



Basic statistical measures of a mathematical model results

Description

This function calculates the mean, variance, skewness, kurtosis and excess kurtosis of a model output, this output can be given for different temporal periods (days, months or years).

Usage

Bstat(out_set)

Arguments

out_set

matrix of dimensions n x t, where n equals the number of runs and t is equal to the number of temporary steps.

Value

a data frame of dimensions t x 6, here t is the number of temporary steps and each column corresponds to a statistical measure: mean, variance, skewness, kurtosis and excess kurtosis.

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

Examples

data("out_set")
data_Bstat <- Bstat(out_set)


@title First four conditional moments of example data

Description

@description Data generated by Cond_Moments example

Usage

CM

Format

A list

CM

A list of arrays, each array has dimensions of steps, t, pp

Author(s)

Camila Garcia-Echeverri


Conditional statistical moments of a model output

Description

This function evaluates the first four statistical moments after grouping the model output by different parametric ranges.

Usage

Cond_Moments(parameters_set, out_set, pp_names, steps = 100)

Arguments

parameters_set

matrix of dimensions n x pp, where n is the number of runs and pp is the number of parameters.

out_set

matrix of dimensions n x t, where n is the number of runs and t is the number of temporary steps.

pp_names

vector that contains the names of the parameters.

steps

number of divisions of the parametric range.

Value

A list of arrays, each array has dimensions of steps, t, pp.

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>
Maria Cristina Areas-Bautista <mcarenasb@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

Examples

data("parameters_set", "out_set", "pp_names")

CM <- Cond_Moments(parameters_set, out_set, pp_names, steps=15)


Global Sensitivity Analysis tool

Description

This function performs the global sensitivity analysis starting from the gross results of the model.

Usage

GSAtool(
  parameters_set,
  out_set,
  pp_names,
  steps = 100,
  save = FALSE,
  dir = NULL
)

Arguments

parameters_set

matrix of dimensions n x pp, where n is the number of runs and pp is the number of parameters.

out_set

matrix of dimensions n x t, where n is the number of runs and t is the number of temporary steps.

pp_names

a strings vector with the names of the parameters of the model

steps

number of divisions of the parametric range.

save

T to save the results in .csv files, by default save=F.

dir

a directory to save the results

Value

a list containing two outputs: SOBOL and AMA indices.

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>
Maria Cristina Areas-Bautista <mcarenasb@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

References

Dell’Oca, A., Riva, M., & Guadagnini, A. (2017). Moment-based metrics for global sensitivity analysis of hydrological systems. Hydrology and Earth System Sciences, 21(12), 6219–6234. https://doi.org/10.5194/hess-21-6219-2017

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

Examples

data("parameters_set", "out_set", "pp_names")


GSA_results <- GSAtool(parameters_set, out_set, pp_names, steps = 15, save=FALSE)


SOBOL indices

Description

This function calculates the first order and total SOBOL indices.

Usage

SOBOL(data_var, CM_mean, CM_var, pp_names)

Arguments

data_var

a vector containing the variance of the model output for each modelling time step.

CM_mean

An array containing the conditional mean of each parameter of the model. This array has dimensions of steps x t x pp, where steps is the number of divisions of the parametric range, t is the number of temporary steps and pp the number of parameters of the model.

CM_var

An array containing the conditional variance of each parameter of the model. This array has dimensions of steps x t x pp, where steps is the number of divisions of the parametric range, t is the number of temporary steps and pp the number of parameters of the model.

pp_names

a strings vector with the names of the parameters of the model.

Value

a list containing two matrices. The first contains the first order sobol, the second sobol_total.

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>
Maria Cristina Areas-Bautista <mcarenasb@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

References

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

Examples

data("data_Bstat", "CM", "pp_names")
SOBOL_indices <- SOBOL(data_Bstat[,3], CM$CM_mean, CM$CM_var , pp_names)


@title First four conditional moments of example data

Description

@description Data generated with the example of the function Cond_Moments

Usage

data_Bstat

Format

A data.frame

data_Bstat

a data frame of dimensions t x 6

Author(s)

Camila Garcia-Echeverri

Source

Function Bstat


@title Results of a sample model

Description

@description Output generated with an example mathematical model.

Usage

out_set

Format

A matrix

out_set

a matrix of dimensions 500 x 365 (pp x t), runs of the model x temporary steps (365 days)

References

Arenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia. National University of Colombia.


@title Set of parameters randomly generated

Description

@description It contains 10 parameters

Usage

parameters_set

Format

A matrix

parameters_set

a matrix of dimensions 500 x 10 (n x pp),runs of the model x number of parameters

References

Arenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia. National University of Colombia.


@title Example - parameters names

Description

@description 10 parameters names.

Usage

pp_names

Format

A value

pp_names

a vector of characters

Author(s)

CGE

References

Arenas-Bautista, M. C. (2020). Integration of Hydrological and Economical Aspects for Water Management in Tropical Regions. Case Study: Middle Magdalena Valley, Colombia. National University of Colombia.


Save GSA results

Description

This function helps to save the results in .csv format

Usage

save_results(
  SOBOL = NULL,
  SOBOL_total = NULL,
  amae = NULL,
  amav = NULL,
  amar = NULL,
  amak = NULL,
  dir
)

Arguments

SOBOL

SOBOL index

SOBOL_total

SOBOL_total

amae

AMAE index

amav

AMAV index

amar

AMAR index

amak

AMAK index

dir

a directory to save the results

Author(s)

Camila Garcia-Echeverri <cagarciae@unal.edu.co>

Hydrodynamics of the natural media research group - HYDS National University of Colombia - Bogota

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.