The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

GRShiny

library(GRShiny)

GRM data simulation

Item parameters for graded response model

item_pars <- genIRTpar(nitem = 10, ncat = 3, nfac = 1)

Individual true latent traits

true_theta <- genTheta(nsample = 500, nfac = 1)

GRM data

grm_dt <- genData(eta = true_theta, ipar = item_pars)

GRM data simulation

Generate lavaan syntax

lav_syn <- genLavSyn(dat = grm_dt, nfac = 1)
#> 
#> F1 =~ NA*y1+l1*y1+l2*y2+l3*y3+l4*y4+l5*y5+l6*y6+l7*y7+l8*y8+l9*y9+l10*y10
#> 
#>  
#> F1~~ 1*F1
#> F1~ 0*1  
#> y1 | t11*t1;
#> y2 | t21*t1;
#> y3 | t31*t1;
#> y4 | t41*t1;
#> y5 | t51*t1;
#> y6 | t61*t1;
#> y7 | t71*t1;
#> y8 | t81*t1;
#> y9 | t91*t1;
#> y10 | t101*t1;
#> y1 | t12*t2;
#> y2 | t22*t2;
#> y3 | t32*t2;
#> y4 | t42*t2;
#> y5 | t52*t2;
#> y6 | t62*t2;
#> y7 | t72*t2;
#> y8 | t82*t2;
#> y9 | t92*t2;
#> y10 | t102*t2;

Conduct GRM with two different estimators

grm.fit <- runGRM(dat = grm_dt, lav.syntax = lav_syn, estimator = "WL")

Results

parameter estimates

extract_est(grm.fit)
#>    lhs op rhs label    est    se      z pvalue
#> 1   F1 =~  y1    l1  0.615 0.043 14.279  0.000
#> 2   F1 =~  y2    l2  0.775 0.035 22.118  0.000
#> 3   F1 =~  y3    l3  0.701 0.038 18.483  0.000
#> 4   F1 =~  y4    l4  0.545 0.048 11.293  0.000
#> 5   F1 =~  y5    l5  0.527 0.046 11.478  0.000
#> 6   F1 =~  y6    l6  0.584 0.044 13.215  0.000
#> 7   F1 =~  y7    l7  0.684 0.040 17.207  0.000
#> 8   F1 =~  y8    l8  0.761 0.035 21.499  0.000
#> 9   F1 =~  y9    l9  0.600 0.045 13.300  0.000
#> 10  F1 =~ y10   l10  0.661 0.040 16.436  0.000
#> 11  y1  |  t1   t11 -0.126 0.056 -2.233  0.026
#> 12  y2  |  t1   t21 -0.136 0.056 -2.412  0.016
#> 13  y3  |  t1   t31 -0.161 0.056 -2.858  0.004
#> 14  y4  |  t1   t41 -0.161 0.056 -2.858  0.004
#> 15  y5  |  t1   t51 -0.202 0.057 -3.572  0.000
#> 16  y6  |  t1   t61 -0.181 0.056 -3.215  0.001
#> 17  y7  |  t1   t71 -0.222 0.057 -3.928  0.000
#> 18  y8  |  t1   t81 -0.040 0.056 -0.715  0.475
#> 19  y9  |  t1   t91 -0.100 0.056 -1.787  0.074
#> 20 y10  |  t1  t101 -0.192 0.056 -3.393  0.001
#> 21  y1  |  t2   t12  0.166 0.056  2.947  0.003
#> 22  y2  |  t2   t22 -0.005 0.056 -0.089  0.929
#> 23  y3  |  t2   t32  0.070 0.056  1.251  0.211
#> 24  y4  |  t2   t42  0.121 0.056  2.144  0.032
#> 25  y5  |  t2   t52  0.264 0.057  4.641  0.000
#> 26  y6  |  t2   t62  0.181 0.056  3.215  0.001
#> 27  y7  |  t2   t72  0.131 0.056  2.323  0.020
#> 28  y8  |  t2   t82  0.105 0.056  1.876  0.061
#> 29  y9  |  t2   t92  0.055 0.056  0.983  0.326
#> 30 y10  |  t2  t102  0.141 0.056  2.501  0.012

IRT plots

ICCplot(grm.fit, 1)

ESplot(grm.fit , 1)

infoPlot(grm.fit, 1)

FSplot(grm.fit)

Launch app

startGRshiny()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.