The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: General Regression Neural Networks Package
Version: 0.1.0
Description: This General Regression Neural Networks Package uses various distance functions. It was motivated by Specht (1991, ISBN:1045-9227), and updated from previous published paper Li et al. (2016) <doi:10.1016/j.palaeo.2015.11.005>. This package includes various functions, although "euclidean" distance is used traditionally.
License: GPL (≥ 3)
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.1.1
Imports: cvTools, rdist, scales, stats, vegan
Depends: R (≥ 3.5.0)
Suggests: rmarkdown, knitr, testthat (≥ 3.0.0)
Config/testthat/edition: 3
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2021-09-06 09:43:08 UTC; paleowind
Author: Shufeng LI ORCID iD [aut, cre]
Maintainer: Shufeng LI <lisf@xtbg.org.cn>
Repository: CRAN
Date/Publication: 2021-09-08 09:30:04 UTC

Find best spread

Description

Find best spread

Usage

findSpread(p_train, v_train, k, fun, scale = TRUE)

Arguments

p_train

The dataframe of training predictor dataset

v_train

The dataframe of training response variables

k

The numeric number of k folds

fun

The distance function

scale

The logic statements (TRUE/FALSE)

Value

Best spread

Examples

data("met")
data("physg")
## Not run: best.spread<-findSpread(physg,met,10,"bray",scale=TRUE)

find best spreads using Rdist

Description

find best spreads using Rdist

Usage

findSpreadRdist(x, y, k, fun, scale = TRUE)

Arguments

x

The dataframe of training predictor dataset

y

The dataframe of training response variables

k

The numeric number of k folds

fun

The distance function

scale

The logic statements (TRUE/FALSE)

Value

The vector of best spreads


Find best spread using vegan function

Description

Find best spread using vegan function

Usage

findSpreadVegan(x, y, k, fun, scale = TRUE)

Arguments

x

The dataframe of training predictor dataset

y

The dataframe of training response variables

k

The numeric number of k folds

fun

The distance function

scale

The logic statements (TRUE/FALSE)

Value

The vector of best spreads


General Regression Neural Networks (GRNNs)

Description

This GRNNs uses various distance functions including: "euclidean", "minkowski", "manhattan", "maximum", "canberra", "angular", "correlation", "absolute_correlation", "hamming", "jaccard","bray", "kulczynski", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao","mahalanobis".

Usage

grnn(p_input, p_train, v_train, fun = "euclidean", best.spread, scale = TRUE)

Arguments

p_input

The dataframe of input predictors

p_train

The dataframe of training predictor dataset

v_train

The dataframe of training response variables

fun

The distance function

best.spread

The vector of best spreads

scale

The logic statements (TRUE/FALSE)

Value

The predictions

Examples

data("met")
data("physg")
best.spread<-c(0.33,0.33,0.31,0.34,0.35,0.35,0.32,0.31,0.29,0.35,0.35)
predict<-physg[1,]
physg.train<-physg[-1,]
met.train<-met[-1,]
prediction<-grnn(predict,physg.train,met.train,fun="euclidean",best.spread,scale=TRUE)

grnn distance

Description

grnn distance

Usage

grnn.distance(x, y, fun)

Arguments

x

The dataframe of training predictor dataset

y

The dataframe of training response variables

fun

The distance function

Value

The matrix of distance between a and b

Examples

data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-grnn.distance(physg.test,physg.train,"bray")

General Regression Neural Networks (GRNNs)

Description

General Regression Neural Networks (GRNNs)

Usage

grnn.kfold(x, y, k, fun, scale = TRUE)

Arguments

x

The dataframe of training predictor dataset

y

The dataframe of training response variables

k

The numeric number of k folds

fun

The distance function

scale

The logic statements (TRUE/FALSE)

Value

rmse,stdae,stdev,mae,r,pvalue,best spread

Examples

data("met")
data("physg")
results_kfold<-grnn.kfold(physg,met,10,"euclidean",scale=TRUE)

meteorological dataset

Description

Data from a global collection by Robert A. Spicer. It include 11 climate variables from 378 sites.

Usage

met

Format

A data frame with 378 rows and 11 variables:

MAT

double COLUMN_DESCRIPTION

WMMT

double COLUMN_DESCRIPTION

CMMT

double COLUMN_DESCRIPTION

GROWSEAS

double COLUMN_DESCRIPTION

GSP

double COLUMN_DESCRIPTION

MMGSP

double COLUMN_DESCRIPTION

Three_WET

double COLUMN_DESCRIPTION

Three_DRY

double COLUMN_DESCRIPTION

RH

double COLUMN_DESCRIPTION

SH

double COLUMN_DESCRIPTION

ENTHAL

double COLUMN_DESCRIPTION

Details

DETAILS


physiognomy dataset

Description

Data from a global collection by Robert A. Spicer. It include 31 leaf physiognomies variables from 378 sites.

Usage

physg

Format

A data frame with 378 rows and 31 variables:

Lobed

double COLUMN_DESCRIPTION

No.Teeth

double COLUMN_DESCRIPTION

Regular.teeth

double COLUMN_DESCRIPTION

Close.teeth

double COLUMN_DESCRIPTION

Round.teeth

double COLUMN_DESCRIPTION

Acute.teeth

double COLUMN_DESCRIPTION

Compound.teeth

double COLUMN_DESCRIPTION

Nanophyll

double COLUMN_DESCRIPTION

Leptophyll.1

double COLUMN_DESCRIPTION

Leptophyll.2

double COLUMN_DESCRIPTION

Microphyll.1

double COLUMN_DESCRIPTION

Microphyll.2

double COLUMN_DESCRIPTION

Microphyll.3

double COLUMN_DESCRIPTION

Mesophyll.1

double COLUMN_DESCRIPTION

Mesophyll.2

double COLUMN_DESCRIPTION

Mesophyll.3

double COLUMN_DESCRIPTION

Emarginate.apex

double COLUMN_DESCRIPTION

Round.apex

double COLUMN_DESCRIPTION

Acute.apex

double COLUMN_DESCRIPTION

Attenuate.apex

double COLUMN_DESCRIPTION

Cordate.base

double COLUMN_DESCRIPTION

Round.base

double COLUMN_DESCRIPTION

Acute.base

double COLUMN_DESCRIPTION

L.W..1.1

double COLUMN_DESCRIPTION

L.W.1.2.1

double COLUMN_DESCRIPTION

L.W.2.3.1

double COLUMN_DESCRIPTION

L.W.3.4.1

double COLUMN_DESCRIPTION

L.W..4.1

double COLUMN_DESCRIPTION

Obovate

double COLUMN_DESCRIPTION

Elliptic

double COLUMN_DESCRIPTION

Ovate

double COLUMN_DESCRIPTION

Details

DETAILS


distance using vegdist

Description

distance using vegdist

Usage

veg.distance(a, b, fun = "bray")

Arguments

a

The dataframe of training predictor dataset

b

The dataframe of validation predictor dataset

fun

The distance function

Value

The matrix of distance between a and b

Examples

data("physg")
physg.train<-physg[1:10,]
physg.test<-physg[11:30,]
distance<-veg.distance(physg.test,physg.train,"bray")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.