The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Illustration on a simulated multipartite network

Sophie Donnet, Pierre Barbillon

2023-03-10

We present the performances of GREMLINS on a simulated multipartite network. GREMLINS includes a function rMBM to simulate multipartite networks. Mathematical details can be found in Bar-Hen, Barbillon, and S. (2021).

Simulation of a complex multipartite network.

We use the function rMBM provided in the package to simulate a multipartite network involving \(2\) functional groups (namely A and B) of respective sizes \[n_A = 60, \quad, n_B = 50.\]

A and B are divided respectively into \(3\) and \(2\) blocks. The sizes of the blocks are generated randomly. For reproductibility, we fix the random seed to an arbitrarily chosen value.

namesFG <- c('A','B')
v_NQ <-  c(60,50) #size of each FG
list_pi = list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) #proportion of each block in each  FG
list_pi[[1]]
#> [1] 0.16 0.40 0.44

We assume that we observe \(3\) interactions matrices

- A-B : continuous weighted interactions
- B-B : binary interactions
- A-A : counting directed interactions
E  <-  rbind(c(1,2),c(2,2),c(1,1))
typeInter <- c( "inc","diradj", "adj")
v_distrib <- c('ZIgaussian','bernoulli','poisson')

Note that the distributions may be Bernoulli, Poisson, Gaussian or Laplace (with null mean). For the Gaussian distribution, a mean and a variance must be given. We generate randomly the emission parameters \(\theta\).

list_theta <- list()
list_theta[[1]] <- list()
list_theta[[1]]$mean  <- matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2)
list_theta[[1]]$var  <-  matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2)
list_theta[[1]]$p0  <-  matrix(c(0.4, 0.1, 0.6, 0.5 , 0.2, 0),3, 2)
list_theta[[2]] <- matrix(c(0.7,1.0, 0.4, 0.6),2, 2)
m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 )
list_theta[[3]] <- (m3 + t(m3))/2# for symetrisation

We are now ready to simulate the data

library(GREMLINS)
dataSim <- rMBM(v_NQ,E , typeInter, v_distrib, list_pi,
                list_theta, namesFG = namesFG, seed = 4,keepClassif  = TRUE)
list_Net <- dataSim$list_Net
length(list_Net)
#> [1] 3
names(list_Net[[1]])
#> [1] "mat"       "typeInter" "rowFG"     "colFG"
list_Net[[1]]$typeInter
#> [1] "inc"
list_Net[[1]]$rowFG
#> [1] "A"
list_Net[[1]]$colFG
#> [1] "B"

Inference with model selection

The model selection and the estimation are performed with the function multipartiteBM.

res_MBMsimu <- multipartiteBM(list_Net, 
                              v_distrib = v_distrib, 
                              namesFG = c('A','B'),
                              v_Kinit = c(2,2),
                              nbCores = 2,
                              initBM = FALSE,
                              keep = FALSE)
#> [1] "------------Nb of entities in each functional group--------------"
#>  A  B 
#> 60 50 
#> [1] "------------Probability distributions on each network--------------"
#> [1] "ZIgaussian" "bernoulli"  "poisson"   
#> [1] "-------------------------------------------------------------------"
#> [1] " ------ Searching the numbers of blocks starting from [ 2 2 ] blocks"
#> [1] "ICL : -7085.81 . Nb of blocks: [ 2 2 ]"
#> [1] "ICL : -5901.15 . Nb of blocks: [ 3 2 ]"
#> [1] "Best model------ ICL : -5901.15 . Nb of clusters: [ 3 2 ] for [ A , B ] respectively"

We can now get the estimated parameters.

res_MBMsimu$fittedModel[[1]]$paramEstim$list_theta$AB$mean
#>          [,1]     [,2]
#> [1,] 1.004152 6.572955
#> [2,] 2.582062 8.881842
#> [3,] 9.994673 6.139221

extractClustersMBM produces the clusters in each functional group.

Cl <- extractClustersMBM(res_MBMsimu)

Inference without model selection

One may also want to estimate the parameters for given numbers of clusters. The function multipartiteBMFixedModel is designed for this task.

res_MBMsimu_fixed <- multipartiteBMFixedModel(list_Net, v_distrib = v_distrib, nbCores = 2,namesFG = namesFG, v_K = c(3,2))
#> [1] "====================== First Forward Step =================="
#> [1] "====================== First Backward Step =================="
#> [1] "====================== Last Forward Step =================="
#> [1] "====================== Last Backward Step =================="
res_MBMsimu_fixed$fittedModel[[1]]$paramEstim$v_K
#> [1] 3 2
extractClustersMBM(res_MBMsimu_fixed)$A
#> [[1]]
#>  [1]  1  4  5 10 11 13 15 16 17 23 24 25 27 29 32 33 34 35 39 40 42 48 51 56 57
#> [26] 58 59 60
#> 
#> [[2]]
#>  [1]  2  6  7  8 12 14 19 22 26 31 36 37 38 41 43 44 46 47 49 50 52
#> 
#> [[3]]
#>  [1]  3  9 18 20 21 28 30 45 53 54 55

Missing data

GREMLINS is also able to handle missing data. In the following experiment, we artificially set missing data in the previously simulated matrices.

############# NA data at random in any matrix
epsilon =  10/100
list_Net_NA <- list_Net
for (m in 1:nrow(E)){
   U <-  sample(c(1,0),v_NQ[E[m,1]]*v_NQ[E[m,2]],replace=TRUE,prob  = c(epsilon, 1-epsilon))
   matNA <- matrix(U,v_NQ[E[m,1]],v_NQ[E[m,2]])
   list_Net_NA[[m]]$mat[matNA== 1] = NA
   if (list_Net_NA[[m]]$typeInter == 'adj') {
     M <- list_Net_NA[[m]]$mat
     diag(M) <- NA
     M[lower.tri(M)] = t(M)[lower.tri(M)]
     list_Net_NA[[m]]$mat <- M
     }
}
res_MBMsimuNA <- multipartiteBM(list_Net_NA, 
                              v_distrib = v_distrib, 
                              namesFG = c('A','B'),
                              v_Kinit = c(2,2),
                              nbCores = 2,
                              keep = FALSE)
#> [1] "------------Nb of entities in each functional group--------------"
#>  A  B 
#> 60 50 
#> [1] "------------Probability distributions on each network--------------"
#> [1] "ZIgaussian" "bernoulli"  "poisson"   
#> [1] "-------------------------------------------------------------------"
#> [1] " ------ Searching the numbers of blocks starting from [ 2 2 ] blocks"
#> [1] "ICL : -6521.28 . Nb of blocks: [ 2 2 ]"
#> [1] "ICL : -5446.97 . Nb of blocks: [ 3 2 ]"
#> [1] " ------ Searching the numbers of blocks starting from [ 3 2 ] blocks"
#> [1] "ICL : -5446.97 . Nb of blocks: [ 3 2 ]"
#> [1] " ------ Searching the numbers of blocks starting from [ 1 2 ] blocks"
#> [1] "ICL : -6977.56 . Nb of blocks: [ 1 2 ]"
#> [1] "ICL : -6521.28 . Nb of blocks: [ 2 2 ]"
#> [1] "Best model------ ICL : -5446.97 . Nb of clusters: [ 3 2 ] for [ A , B ] respectively"

We then have a function to predict the missing edges (probability if binary or intensity if weighted)

pred <- predictMBM(res_MBMsimuNA)

References

Bar-Hen, A., P. Barbillon, and Donnet S. 2021. “Block Models for Multipartite Networks. Applications in Ecology and Ethnobiology.” Statistical Modelling (to Appear).

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.