The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In this example, we simulate data from a multivariate (convolved) GP model. See details of this model in Chapter 8 of Shi, J. Q., and Choi, T. (2011), “Gaussian Process Regression Analysis for Functional Data”, CRC Press.
We simulate \(30\) realisations of three dependent outputs, with \(250\) time points on \([0,1]\) for each output.
set.seed(123)
nrep <- 30
n1 <- 250
n2 <- 250
n3 <- 250
N <- 3
n <- n1+n2+n3
input1 <- sapply(1:n1, function(x) (x - min(1:n1))/max(1:n1 - min(1:n1)))
input2 <- input1
input3 <- input1
# storing input vectors in a list
Data <- list()
Data$input <- list(input1, input2, input3)
# true hyperparameter values
nu0s <- c(6, 4, 2)
nu1s <- c(0.1, 0.05, 0.01)
a0s <- c(500, 500, 500)
a1s <- c(100, 100, 100)
sigm <- 0.05
hp <- c(nu0s, log(nu1s), log(a0s), log(a1s), log(sigm))
# Calculate covariance matrix
Psi <- mgpCovMat(Data=Data, hp=hp)
We need an index vector identifying to which output the data corresponds:
Covariance functions \(\text{Cov}\big[X_j(t), X_\ell(0) \big]\)
can be plotted as follows. The arguments output
and
outputp
correspond to \(j\) and \(\ell\), respectively.
Given the hyperparameters hp
, we can plot the auto- and
cross-covariance functions as follows:
# Plotting an auto-covariance function
plotmgpCovFun(type="Cov", output=1, outputp=1, Data=Data, hp=hp, idx=idx)
# Plotting a cross-covariance function
plotmgpCovFun(type="Cov", output=1, outputp=2, Data=Data, hp=hp, idx=idx)
Corresponding correlation functions can be plotted by setting
type=Cor
:
# Plotting an auto-correlation function
plotmgpCovFun(type="Cor", output=1, outputp=1, Data=Data, hp=hp, idx=idx)
# Plotting a cross-correlation function
plotmgpCovFun(type="Cor", output=1, outputp=2, Data=Data, hp=hp, idx=idx)
We assume that the mean functions for each output are \(\mu_1(t) = 5t\), \(\mu_2(t) = 10t\), and \(\mu_3(t) = -3t\) and simulate the data as follows
mu <- c( 5*input1, 10*input2, -3*input3)
Y <- t(mvrnorm(n=nrep, mu=mu, Sigma=Psi))
response <- list()
for(j in 1:N){
response[[j]] <- Y[idx==j,,drop=F]
}
# storing the response in the list
Data$response <- response
Below we estimate the mean and covariance functions using a subset of
data including \(m=100\) observations
(out of \(750\) of the sample) aiming
for a faster estimation. These \(m\)
observations are chosen randomly. For the mean functions, we choose the
linear model by settting meanModel = 't'
.
Next, based on the estimated model, we want to predict the values of the three outputs at new time points:
n_star <- 60*N
input1star <- seq(min(input1), max(input1), length.out = n_star/N)
input2star <- seq(min(input2), max(input2), length.out = n_star/N)
input3star <- seq(min(input3), max(input3), length.out = n_star/N)
DataNew <- list()
DataNew$input <- list(input1star, input2star, input3star)
We have trained the model using \(m\) time points. However, for visualisation purposes, it is more interesting to see predictions based on very few data points. Therefore, let’s use a very small subset of observations and make predictions given this small subset. We will use observations from the fifth multivariate realisation stored in `Data’.
realisation <- 5
obsSet <- list()
obsSet[[1]] <- c(5, 10, 23, 50, 80, 200)
obsSet[[2]] <- c(10, 23, 180)
obsSet[[3]] <- c(3, 11, 30, 240)
DataObs <- list()
DataObs$input[[1]] <- Data$input[[1]][obsSet[[1]]]
DataObs$input[[2]] <- Data$input[[2]][obsSet[[2]]]
DataObs$input[[3]] <- Data$input[[3]][obsSet[[3]]]
DataObs$response[[1]] <- Data$response[[1]][obsSet[[1]], realisation]
DataObs$response[[2]] <- Data$response[[2]][obsSet[[2]], realisation]
DataObs$response[[3]] <- Data$response[[3]][obsSet[[3]], realisation]
The mgprPredict
function returns a list containing the
predictive mean and standard deviation for the curves of each output at
the new time points.
# Calculate predictions for the test set given some observations
predCGP <- mgprPredict(train=res, DataObs=DataObs, DataNew=DataNew)
str(predCGP)
#> List of 3
#> $ pred.mean :List of 3
#> ..$ : num [1:60, 1] -2.93 -2.72 -2.32 -1.83 -1.3 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:60] "1" "2" "3" "4" ...
#> .. .. ..$ : NULL
#> ..$ : num [1:60, 1] -0.65281 -0.46403 -0.28736 -0.13731 -0.00933 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:60] "1" "2" "3" "4" ...
#> .. .. ..$ : NULL
#> ..$ : num [1:60, 1] -0.33 -0.346 -0.355 -0.36 -0.362 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:60] "1" "2" "3" "4" ...
#> .. .. ..$ : NULL
#> $ pred.sd :List of 3
#> ..$ : num [1:60] 0.136 0.0673 0.0662 0.0866 0.0932 ...
#> ..$ : num [1:60] 0.2731 0.15 0.0713 0.0892 0.0984 ...
#> ..$ : num [1:60] 0.0715 0.0613 0.0606 0.0633 0.0653 ...
#> $ noiseFreePred: logi FALSE
#> - attr(*, "class")= chr "mgpr"
The predictions (with 95% confidence inverval) for the \(5\)th curve at the new time points can be
visualised by using the model estimated by the mgpr
function:
Let’s assume that we have additional information for the first two functions by also including their 100th and 150th observations:
obsSet[[1]] <- c(5, 10, 23, 50, 80, 100, 150, 200)
obsSet[[2]] <- c(10, 23, 100, 150, 180)
DataObs$input[[1]] <- Data$input[[1]][obsSet[[1]]]
DataObs$input[[2]] <- Data$input[[2]][obsSet[[2]]]
DataObs$response[[1]] <- Data$response[[1]][obsSet[[1]], realisation]
DataObs$response[[2]] <- Data$response[[2]][obsSet[[2]], realisation]
Now notice how predictions for the third function are affected by the information added to the other functions.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.