The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
{GLMMcosinor}
allows specification of multi-component
cosinor models. This is useful if there are multiple explanatory
variables with known periods affecting the response variable.
To generate a multi-component model, set n_components
in
the amp_acro()
part of the formula to the desired number of
components. Then, optionally assign groups to each component in the
group
argument. If only one group entry is supplied but
n_components
is greater than 1, then the single group entry
will be matched to each component.
The period
argument must also match the length of
n_components
, where the order of the periods corresponds to
their assigned component. For example, if n_components = 2
,
and period = c(12,6)
, then the first component has a
period
of 12 and the second a period of 6. Similarly to the
group
argument, if only one period is supplied despite
n_components
being greater than 1, then this period will be
matched to each component.
For example:
library(GLMMcosinor)
testdata_two_components <- simulate_cosinor(
1000,
n_period = 10,
mesor = 7,
amp = c(0.1, 0.4),
acro = c(1, 1.5),
beta.mesor = 4.4,
beta.amp = c(2, 1),
beta.acro = c(1, -1.5),
family = "poisson",
period = c(12, 6),
n_components = 2,
beta.group = TRUE
)
object <- cglmm(
Y ~ group + amp_acro(
time_col = times,
n_components = 2,
period = c(12, 6),
group = c("group", "group")
),
data = testdata_two_components,
family = poisson()
)
object
#>
#> Conditional Model
#>
#> Raw formula:
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 + group:main_sss2
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 6.99894
#> group1 -2.60342
#> group0:main_rrr1 0.05248
#> group1:main_rrr1 1.08250
#> group0:main_sss1 0.08753
#> group1:main_sss1 1.68129
#> group0:main_rrr2 0.02926
#> group1:main_rrr2 0.06860
#> group0:main_sss2 0.40068
#> group1:main_sss2 -0.99822
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 6.99894
#> [group=1] -2.60342
#> [group=0]:amp1 0.10205
#> [group=1]:amp1 1.99964
#> [group=0]:amp2 0.40175
#> [group=1]:amp2 1.00057
#> [group=0]:acr1 1.03069
#> [group=1]:acr1 0.99875
#> [group=0]:acr2 1.49790
#> [group=1]:acr2 -1.50218
In the output, the suffix on the estimates for amplitude and acrophase represents its component:
[group=0]:amp1 = 0.10205
represents the estimate for
amplitude of group 0
for the first component
[group=1]:amp1 = 1.99964
represents the estimate for
amplitude of group 1
for the first component
[group=0]:amp2 = 0.40175
represents the estimate for
amplitude of group 0
for the second component
[group=1]:amp2 = 1.00057
represents the estimate for
amplitude of group 1
for the second component
Similarly for acrophase estimates
If a multicomponent model has one component that is grouped with
other components that aren’t, the vector input for group
must still be the same length as n_components
but have the
non-grouped components represented as group = NA
.
For example, if wanted only the first component to have a grouped
component, we would specify the group
argument as
group = c("group", NA))
. Here, the first component is
grouped by group
, and the second component is not grouped.
The data was simulated such that the second component was the same for
both groups.
testdata_two_components_grouped <- simulate_cosinor(
1000,
n_period = 5,
mesor = 3.7,
amp = c(0.1, 0.4),
acro = c(1, 1.5),
beta.mesor = 4,
beta.amp = c(2, 0.4),
beta.acro = c(1, 1.5),
family = "poisson",
period = c(12, 6),
n_components = 2,
beta.group = TRUE
)
object <- cglmm(
Y ~ group + amp_acro(
time_col = times,
n_components = 2,
period = c(12, 6),
group = c("group", NA)
),
data = testdata_two_components_grouped,
family = poisson()
)
object
#>
#> Conditional Model
#>
#> Raw formula:
#> Y ~ group + main_rrr2 + main_sss2 + group:main_rrr1 + group:main_sss1
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 3.69558
#> group1 0.31184
#> main_rrr2 0.02612
#> main_sss2 0.39710
#> group0:main_rrr1 0.04946
#> group1:main_rrr1 1.07681
#> group0:main_sss1 0.09546
#> group1:main_sss1 1.67644
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 3.69558
#> [group=1] 0.31184
#> [group=0]:amp1 0.10752
#> [group=1]:amp1 1.99248
#> amp2 0.39795
#> [group=0]:acr1 1.09273
#> [group=1]:acr1 0.99984
#> acr2 1.50512
We would interpret the output the transformed coefficients as follows:
MESOR for group 0
is 3.69558
.
MESOR difference to group 0
for group 1
is [group=1] = 0.31184
The estimate for the amplitude of the first component for
group 0
is[group=0]:amp1 = 0.10752
The estimate for the amplitude of the first component for
group 1
is [group=1]:amp1 = 1.99248
The estimate for the amplitude of the second component is
amp2 = 0.39795
and the same for both group 0
and group 1
The estimate for the acrophase of the first component for
group 0
is
[group=0]:acr1 = 1.09273
radians
The estimate for the acrophase of the first component for
group 1
is
[group=1]:acr1 = 0.99984
radians
The estimate for the acrophase of the second component is
acr2 = 1.50512
radians and is the same for both
group 0
and group 1
In this example, it is not strictly necessary to specify
group = c("group", NA))
since specifying
group = c("group","group")
still yields accurate
estimates:
object <- cglmm(
Y ~ group + amp_acro(
time_col = times,
n_components = 2,
period = c(12, 6),
group = c("group", "group")
),
data = testdata_two_components_grouped,
family = poisson()
)
object
#>
#> Conditional Model
#>
#> Raw formula:
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 + group:main_sss2
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 3.69549
#> group1 0.31048
#> group0:main_rrr1 0.05027
#> group1:main_rrr1 1.07082
#> group0:main_sss1 0.09515
#> group1:main_sss1 1.68461
#> group0:main_rrr2 0.01368
#> group1:main_rrr2 0.03613
#> group0:main_sss2 0.39617
#> group1:main_sss2 0.39776
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 3.69549
#> [group=1] 0.31048
#> [group=0]:amp1 0.10761
#> [group=1]:amp1 1.99614
#> [group=0]:amp2 0.39641
#> [group=1]:amp2 0.39939
#> [group=0]:acr1 1.08472
#> [group=1]:acr1 1.00457
#> [group=0]:acr2 1.53629
#> [group=1]:acr2 1.48022
If a multicomponent model is specified
(n_components > 1
) but the length of group
or period
is 1, then it will be assumed that the one
group
and/or period
values specified apply to
all components. For example, if n_components = 2
,
but group = "group"
, then the one element in this
group
vector will be replicated to produce
group = c("group","group")
which now has a length that
matches n_components
. The same applies for
period
.
For instance, the following two cglmm()
calls fit the
same models:
cglmm(
Y ~ group + amp_acro(times,
n_components = 2,
period = 12,
group = "group"
),
data = testdata_two_components,
family = poisson()
)
#>
#> Conditional Model
#>
#> Raw formula:
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 + group:main_sss2
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 7.04448
#> group1 -2.22027
#> group0:main_rrr1 0.07222
#> group1:main_rrr1 0.39492
#> group0:main_sss1 0.11292
#> group1:main_sss1 1.11176
#> group0:main_rrr2 NA
#> group1:main_rrr2 NA
#> group0:main_sss2 NA
#> group1:main_sss2 NA
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 7.04448
#> [group=1] -2.22027
#> [group=0]:amp1 0.13404
#> [group=1]:amp1 1.17982
#> [group=0]:amp2 NA
#> [group=1]:amp2 NA
#> [group=0]:acr1 1.00181
#> [group=1]:acr1 1.22947
#> [group=0]:acr2 NA
#> [group=1]:acr2 NA
cglmm(
Y ~ group + amp_acro(times,
n_components = 2,
period = c(12, 12),
group = c("group", "group")
),
data = testdata_two_components,
family = poisson()
)
#>
#> Conditional Model
#>
#> Raw formula:
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 + group:main_sss2
#>
#> Raw Coefficients:
#> Estimate
#> (Intercept) 7.04448
#> group1 -2.22027
#> group0:main_rrr1 0.07222
#> group1:main_rrr1 0.39492
#> group0:main_sss1 0.11292
#> group1:main_sss1 1.11176
#> group0:main_rrr2 NA
#> group1:main_rrr2 NA
#> group0:main_sss2 NA
#> group1:main_sss2 NA
#>
#> Transformed Coefficients:
#> Estimate
#> (Intercept) 7.04448
#> [group=1] -2.22027
#> [group=0]:amp1 0.13404
#> [group=1]:amp1 1.17982
#> [group=0]:amp2 NA
#> [group=1]:amp2 NA
#> [group=0]:acr1 1.00181
#> [group=1]:acr1 1.22947
#> [group=0]:acr2 NA
#> [group=1]:acr2 NA
The plot below shows a 3-component model with the simulated data overlayed:
Generating a model with n
components simply involves
setting n_components
to be the number of desired components
and ensuring that the period
argument is a vector where
each element corresponds the period of its respective component.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.