The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Multicomponent cosinor modeling

Oliver Jayasinghe and Rex Parsons

{GLMMcosinor} allows specification of multi-component cosinor models. This is useful if there are multiple explanatory variables with known periods affecting the response variable.

Generating a two-component model

To generate a multi-component model, set n_components in the amp_acro() part of the formula to the desired number of components. Then, optionally assign groups to each component in the group argument. If only one group entry is supplied but n_components is greater than 1, then the single group entry will be matched to each component.

The period argument must also match the length of n_components, where the order of the periods corresponds to their assigned component. For example, if n_components = 2, and period = c(12,6), then the first component has a period of 12 and the second a period of 6. Similarly to the group argument, if only one period is supplied despite n_components being greater than 1, then this period will be matched to each component.

For example:

library(GLMMcosinor)
testdata_two_components <- simulate_cosinor(
  1000,
  n_period = 10,
  mesor = 7,
  amp = c(0.1, 0.4),
  acro = c(1, 1.5),
  beta.mesor = 4.4,
  beta.amp = c(2, 1),
  beta.acro = c(1, -1.5),
  family = "poisson",
  period = c(12, 6),
  n_components = 2,
  beta.group = TRUE
)
object <- cglmm(
  Y ~ group + amp_acro(
    time_col = times,
    n_components = 2,
    period = c(12, 6),
    group = c("group", "group")
  ),
  data = testdata_two_components,
  family = poisson()
)
object
#> 
#>  Conditional Model 
#> 
#>  Raw formula: 
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 +      group:main_sss2 
#> 
#>  Raw Coefficients: 
#>                  Estimate
#> (Intercept)       6.99894
#> group1           -2.60342
#> group0:main_rrr1  0.05248
#> group1:main_rrr1  1.08250
#> group0:main_sss1  0.08753
#> group1:main_sss1  1.68129
#> group0:main_rrr2  0.02926
#> group1:main_rrr2  0.06860
#> group0:main_sss2  0.40068
#> group1:main_sss2 -0.99822
#> 
#>  Transformed Coefficients: 
#>                Estimate
#> (Intercept)     6.99894
#> [group=1]      -2.60342
#> [group=0]:amp1  0.10205
#> [group=1]:amp1  1.99964
#> [group=0]:amp2  0.40175
#> [group=1]:amp2  1.00057
#> [group=0]:acr1  1.03069
#> [group=1]:acr1  0.99875
#> [group=0]:acr2  1.49790
#> [group=1]:acr2 -1.50218

In the output, the suffix on the estimates for amplitude and acrophase represents its component:

autoplot(object)

If a multicomponent model has one component that is grouped with other components that aren’t, the vector input for group must still be the same length as n_components but have the non-grouped components represented as group = NA.

For example, if wanted only the first component to have a grouped component, we would specify the group argument as group = c("group", NA)) . Here, the first component is grouped by group, and the second component is not grouped. The data was simulated such that the second component was the same for both groups.

testdata_two_components_grouped <- simulate_cosinor(
  1000,
  n_period = 5,
  mesor = 3.7,
  amp = c(0.1, 0.4),
  acro = c(1, 1.5),
  beta.mesor = 4,
  beta.amp = c(2, 0.4),
  beta.acro = c(1, 1.5),
  family = "poisson",
  period = c(12, 6),
  n_components = 2,
  beta.group = TRUE
)
object <- cglmm(
  Y ~ group + amp_acro(
    time_col = times,
    n_components = 2,
    period = c(12, 6),
    group = c("group", NA)
  ),
  data = testdata_two_components_grouped,
  family = poisson()
)
object
#> 
#>  Conditional Model 
#> 
#>  Raw formula: 
#> Y ~ group + main_rrr2 + main_sss2 + group:main_rrr1 + group:main_sss1 
#> 
#>  Raw Coefficients: 
#>                  Estimate
#> (Intercept)       3.69558
#> group1            0.31184
#> main_rrr2         0.02612
#> main_sss2         0.39710
#> group0:main_rrr1  0.04946
#> group1:main_rrr1  1.07681
#> group0:main_sss1  0.09546
#> group1:main_sss1  1.67644
#> 
#>  Transformed Coefficients: 
#>                Estimate
#> (Intercept)     3.69558
#> [group=1]       0.31184
#> [group=0]:amp1  0.10752
#> [group=1]:amp1  1.99248
#> amp2            0.39795
#> [group=0]:acr1  1.09273
#> [group=1]:acr1  0.99984
#> acr2            1.50512

We would interpret the output the transformed coefficients as follows:

autoplot(object, superimpose.data = TRUE)

In this example, it is not strictly necessary to specify group = c("group", NA)) since specifying group = c("group","group")still yields accurate estimates:

object <- cglmm(
  Y ~ group + amp_acro(
    time_col = times,
    n_components = 2,
    period = c(12, 6),
    group = c("group", "group")
  ),
  data = testdata_two_components_grouped,
  family = poisson()
)
object
#> 
#>  Conditional Model 
#> 
#>  Raw formula: 
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 +      group:main_sss2 
#> 
#>  Raw Coefficients: 
#>                  Estimate
#> (Intercept)       3.69549
#> group1            0.31048
#> group0:main_rrr1  0.05027
#> group1:main_rrr1  1.07082
#> group0:main_sss1  0.09515
#> group1:main_sss1  1.68461
#> group0:main_rrr2  0.01368
#> group1:main_rrr2  0.03613
#> group0:main_sss2  0.39617
#> group1:main_sss2  0.39776
#> 
#>  Transformed Coefficients: 
#>                Estimate
#> (Intercept)     3.69549
#> [group=1]       0.31048
#> [group=0]:amp1  0.10761
#> [group=1]:amp1  1.99614
#> [group=0]:amp2  0.39641
#> [group=1]:amp2  0.39939
#> [group=0]:acr1  1.08472
#> [group=1]:acr1  1.00457
#> [group=0]:acr2  1.53629
#> [group=1]:acr2  1.48022

If a multicomponent model is specified (n_components > 1) but the length of group or period is 1, then it will be assumed that the one group and/or period values specified apply to all components. For example, if n_components = 2 , but group = "group", then the one element in this group vector will be replicated to produce group = c("group","group")which now has a length that matches n_components. The same applies for period.

For instance, the following two cglmm() calls fit the same models:

cglmm(
  Y ~ group + amp_acro(times,
    n_components = 2,
    period = 12,
    group = "group"
  ),
  data = testdata_two_components,
  family = poisson()
)
#> 
#>  Conditional Model 
#> 
#>  Raw formula: 
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 +      group:main_sss2 
#> 
#>  Raw Coefficients: 
#>                  Estimate
#> (Intercept)       7.04448
#> group1           -2.22027
#> group0:main_rrr1  0.07222
#> group1:main_rrr1  0.39492
#> group0:main_sss1  0.11292
#> group1:main_sss1  1.11176
#> group0:main_rrr2       NA
#> group1:main_rrr2       NA
#> group0:main_sss2       NA
#> group1:main_sss2       NA
#> 
#>  Transformed Coefficients: 
#>                Estimate
#> (Intercept)     7.04448
#> [group=1]      -2.22027
#> [group=0]:amp1  0.13404
#> [group=1]:amp1  1.17982
#> [group=0]:amp2       NA
#> [group=1]:amp2       NA
#> [group=0]:acr1  1.00181
#> [group=1]:acr1  1.22947
#> [group=0]:acr2       NA
#> [group=1]:acr2       NA


cglmm(
  Y ~ group + amp_acro(times,
    n_components = 2,
    period = c(12, 12),
    group = c("group", "group")
  ),
  data = testdata_two_components,
  family = poisson()
)
#> 
#>  Conditional Model 
#> 
#>  Raw formula: 
#> Y ~ group + group:main_rrr1 + group:main_sss1 + group:main_rrr2 +      group:main_sss2 
#> 
#>  Raw Coefficients: 
#>                  Estimate
#> (Intercept)       7.04448
#> group1           -2.22027
#> group0:main_rrr1  0.07222
#> group1:main_rrr1  0.39492
#> group0:main_sss1  0.11292
#> group1:main_sss1  1.11176
#> group0:main_rrr2       NA
#> group1:main_rrr2       NA
#> group0:main_sss2       NA
#> group1:main_sss2       NA
#> 
#>  Transformed Coefficients: 
#>                Estimate
#> (Intercept)     7.04448
#> [group=1]      -2.22027
#> [group=0]:amp1  0.13404
#> [group=1]:amp1  1.17982
#> [group=0]:amp2       NA
#> [group=1]:amp2       NA
#> [group=0]:acr1  1.00181
#> [group=1]:acr1  1.22947
#> [group=0]:acr2       NA
#> [group=1]:acr2       NA

Generating a three-component model

The plot below shows a 3-component model with the simulated data overlayed:

testdata_three_components <- simulate_cosinor(
  1000,
  n_period = 2,
  mesor = 7,
  amp = c(0.1, 0.4, 0.5),
  acro = c(1, 1.5, 0.1),
  beta.mesor = 4.4,
  beta.amp = c(2, 1, 0.4),
  beta.acro = c(1, -1.5, -1),
  family = "poisson",
  period = c(12, 6, 12),
  n_components = 3,
  beta.group = TRUE
)
object <- cglmm(
  Y ~ group + amp_acro(times,
    n_components = 3,
    period = c(12, 6, 12),
    group = "group"
  ),
  data = testdata_three_components,
  family = poisson()
)
autoplot(object,
  superimpose.data = TRUE,
  x_str = "group",
  predict.ribbon = FALSE,
  data_opacity = 0.08
)

Generating models with n-components

Generating a model with n components simply involves setting n_components to be the number of desired components and ensuring that the period argument is a vector where each element corresponds the period of its respective component.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.