The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

GCSM

R-CMD-check CRAN status

The goal of GCSM is to implement the generic composite similarity measure (GCSM), described in “A generic composite measure of similarity between geospatial variables” by Liu et al. (2020) doi:10.1016/j.ecoinf.2020.101169. This package also provides implementations of SSIM and CMSC. Functions are given to compute composite similarity between vectors (e.g, gcsm), on spatial windows (e.g., gcsm_sw) or temporal windows (e.g., gcsm_tw). They are implemented in C++ with RcppArmadillo. OpenMP is used to facilitate parallel computing.

Installation

You can install the released version of GCSM from CRAN with:

install.packages("GCSM")

Or install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("liuyadong/GCSM")

Examples

Composite similarity between vectors:

library(GCSM)

x = runif(9)
gcsm(x, x)
#> [1] 1
cmsc(x, x)
#> [1] 1

# mean shift
gcsm(x, x - 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.8
cmsc(x, x - 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.96
gcsm(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.8
cmsc(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.96
## dissimilarity
y = 1 - x # y is the perfect antianalog of x
gcsm(y, x)
#> [1] -1
gcsm(y, x - 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] -0.8
gcsm(y, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] -0.8

# random noise
noise = rnorm(9, mean = 0, sd = 0.1)
gcsm(x, x + noise, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.7719099
cmsc(x, x + noise, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] 0.9427791
## dissimilariry
gcsm(y, x + noise, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#> [1] -0.7719099

Composite similarity on spatial windows:

x = matrix(runif(36), nrow = 6, ncol = 6)
gcsm_sw(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1, ksize = 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,]  0.8  0.8  0.8  0.8  0.8  0.8
#> [2,]  0.8  0.8  0.8  0.8  0.8  0.8
#> [3,]  0.8  0.8  0.8  0.8  0.8  0.8
#> [4,]  0.8  0.8  0.8  0.8  0.8  0.8
#> [5,]  0.8  0.8  0.8  0.8  0.8  0.8
#> [6,]  0.8  0.8  0.8  0.8  0.8  0.8
cmsc_sw(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1, ksize = 3)
#>      [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.96 0.96 0.96 0.96 0.96 0.96
#> [2,] 0.96 0.96 0.96 0.96 0.96 0.96
#> [3,] 0.96 0.96 0.96 0.96 0.96 0.96
#> [4,] 0.96 0.96 0.96 0.96 0.96 0.96
#> [5,] 0.96 0.96 0.96 0.96 0.96 0.96
#> [6,] 0.96 0.96 0.96 0.96 0.96 0.96
ssim_sw(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1, ksize = 3)
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.9411454 0.9214168 0.9169390 0.9461954 0.9712785 0.9777024
#> [2,] 0.9625560 0.9545538 0.9517716 0.9632256 0.9717116 0.9736731
#> [3,] 0.9703725 0.9675556 0.9610270 0.9679905 0.9633441 0.9609509
#> [4,] 0.9688934 0.9684905 0.9655600 0.9679028 0.9587779 0.9518538
#> [5,] 0.9538236 0.9484908 0.9404195 0.9511968 0.9568499 0.9606823
#> [6,] 0.9476272 0.9330108 0.9286503 0.9456641 0.9650384 0.9701094

Composite similarity on temporal windows:

x = array(runif(81), dim = c(3, 3, 9))
gcsm_tw(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#>      [,1] [,2] [,3]
#> [1,]  0.8  0.8  0.8
#> [2,]  0.8  0.8  0.8
#> [3,]  0.8  0.8  0.8
cmsc_tw(x, x + 0.2, xmin = 0, xmax = 1, ymin = 0, ymax = 1)
#>      [,1] [,2] [,3]
#> [1,] 0.96 0.96 0.96
#> [2,] 0.96 0.96 0.96
#> [3,] 0.96 0.96 0.96

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.