The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of FuzzySimRes, a library written in R, is to simulate synthetic fuzzy data and provide so-called epistemic bootstrap procedures.
The simulation procedures are useful to generate synthetic samples that can be applied in statistical inference (see, e.g., (P. Grzegorzewski, Hryniewicz, and Romaniuk 2020a, 2020b; Parchami, Grzegorzewski, and Romaniuk 2024)) and consist of fuzzy numbers (e.g., triangular or trapezoidal ones).
The epistemic bootstrap is used for epistemic fuzzy data (see (Couso and Dubois 2014)) and it allows (see (P. Grzegorzewski and Romaniuk 2021; Przemyslaw Grzegorzewski and Romaniuk 2022)):
Additionally, the special epistemic fuzzy real-life data set is provided (see (Faraz and Shapiro 2010)) which consists of triangular fuzzy numbers.
The fuzzy data used in this package should be defined as the variables introduced in (Gagolewski and Caha 2021) (as, e.g., triangular fuzzy numbers).
The following procedures are available in the library:
You can install the latest development version of FuzzyResampling with:
library(devtools)
install_github("mroman-ibs/FuzzySimRes")
You can install the latest stable version from CRAN with:
install.packages("FuzzySimRes")
# set seed
set.seed(12345)
# load library
library(FuzzySimRes)
# generate the initial sample consisting of 5 trapezoidal fuzzy numbers
<- SimulateSample(5,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
sample1 incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")
# apply the epistemic bootstrap with 10 cuts
EpistemicBootstrap (sample1$value, cutsNumber=10)
#> X1 X2 X3 X4 X5
#> 0.3616 1.1497756 1.892964 -0.4412416 -0.4123010 -0.21887696
#> 0.8688 1.0789047 2.256274 0.8043010 -0.2897991 0.21447852
#> 0.9042 1.0821638 1.558882 -0.5234141 -0.4201384 0.01919864
#> 0.6174 0.9770422 1.871995 0.2864493 -0.4820862 0.22506592
#> 0.134 1.4685182 1.471085 1.1883406 -0.7735033 -0.53509789
#> 0.7822 1.6920152 2.316149 0.3981874 -0.3132989 0.29258249
#> 0.4292 1.6567735 1.597893 0.1417311 -0.4820543 0.24728641
#> 0.9273 1.2565657 2.537325 -0.1589284 -0.6728166 -0.22298375
#> 0.7732 1.1521309 2.275875 -0.2135284 -0.7091520 0.07312683
#> 0.2597 1.5825929 2.525235 -0.8153841 -0.7529021 0.17019910
# apply the antithetic bootstrap with 10 cuts
AntitheticBootstrap (sample1$value, cutsNumber=10)
#> X1 X2 X3 X4 X5
#> 0.5138 1.715099 2.348629 0.84791420 -0.4155065 -0.10278774
#> 0.7201 1.657023 2.315396 0.75226172 -0.2950119 -0.18807131
#> 0.7499 1.525241 1.529150 0.04191831 -0.4140887 0.28010819
#> 0.0956 1.036562 1.548077 0.88263662 -0.2954918 -0.28473900
#> 0.3978 1.123620 2.289173 0.08373510 -0.4331157 -0.19568336
#> 0.2945 1.423709 1.622644 0.68312991 -0.4069346 0.13470515
#> 0.6173 1.300673 2.154367 0.27146818 -0.6049461 0.30957665
#> 0.9743 1.153848 1.880561 0.76471178 -0.5728187 -0.29215072
#> 0.6182 1.384238 2.107480 0.30352891 -0.6221601 -0.08907579
#> 0.5214 1.574392 1.977895 -0.28340154 -0.3810230 0.25160955
# calculate the mean using the standard epistemic bootstrap approach
EpistemicMean(sample1$value,cutsNumber = 30)
#> $value
#> [1] 0.60163
#>
#> $SE
#> [1] 0.1570901
#>
#> $MSE
#> [1] NA
# calculate the median using the antithetic epistemic bootstrap approach
EpistemicEstimator(sample1$value,estimator="median",cutsNumber = 30,bootstrapMethod="anti")
#> $value
#> [1] 0.136565
#>
#> $SE
#> [1] 0.2187421
#>
#> $MSE
#> [1] NA
# generate two independent initial fuzzy samples
<-SimulateSample(20,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
list1incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")
<-SimulateSample(20,originalPD="rnorm",parOriginalPD=list(mean=0,sd=1),
list2incrCorePD="rexp", parIncrCorePD=list(rate=2),
suppLeftPD="runif",parSuppLeftPD=list(min=0,max=0.6),
suppRightPD="runif", parSuppRightPD=list(min=0,max=0.6),
type="trapezoidal")
# apply the Kolmogorov-Smirnov two-sample test for two different samples
# with the average statistics approach
EpistemicTest(list1$value,list2$value,cutsNumber = 30)
#> [1] 0.8319696
# apply the Kolmogorov-Smirnov two-sample test for two different samples
# with the multi-statistic and antithetic approach
EpistemicTest(list1$value,list2$value,algorithm = "ms",bootstrapMethod = "anti")
#> [1] 0.8319696
# apply the Kolmogorov-Smirnov one-sample test
# with the averaging statistic approach for the first sample
AverageStatisticEpistemicTest(list1$value,sample2=NULL,cutsNumber = 30,y="pnorm")
#> [1] 0.6101717
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.