The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

FateID: Quantification of Fate Bias in Multipotent Progenitors

Application of 'FateID' allows computation and visualization of cell fate bias for multi-lineage single cell transcriptome data. Herman, J.S., Sagar, Grün D. (2018) <doi:10.1038/nmeth.4662>.

Version: 0.2.2
Depends: R (≥ 3.5.0)
Imports: graphics, grDevices, locfit, matrixStats, pheatmap, princurve, randomForest, RColorBrewer, Rtsne, som, stats, umap, utils
Suggests: DESeq2, knitr, rmarkdown
Published: 2022-06-14
DOI: 10.32614/CRAN.package.FateID
Author: Dominic Grün
Maintainer: Dominic Grün <dominic.gruen at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: FateID results

Documentation:

Reference manual: FateID.pdf
Vignettes: An introduction to FateID. (source, R code)

Downloads:

Package source: FateID_0.2.2.tar.gz
Windows binaries: r-devel: FateID_0.2.2.zip, r-release: FateID_0.2.2.zip, r-oldrel: FateID_0.2.2.zip
macOS binaries: r-release (arm64): FateID_0.2.2.tgz, r-oldrel (arm64): FateID_0.2.2.tgz, r-release (x86_64): FateID_0.2.2.tgz, r-oldrel (x86_64): FateID_0.2.2.tgz
Old sources: FateID archive

Reverse dependencies:

Reverse imports: RaceID

Linking:

Please use the canonical form https://CRAN.R-project.org/package=FateID to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.