The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

LazyLoad: yes
LazyData: yes
Version: 2024.7-30
Title: Forward Stepwise Deep Autoencoder-Based Monotone NLDR
Maintainer: Youyi Fong <youyifong@gmail.com>
Depends: R (≥ 3.5.0)
Suggests: R.rsp, RUnit
Imports: kyotil, reticulate (≥ 1.10)
VignetteBuilder: R.rsp
Description: FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Packaged: 2024-07-31 14:57:27 UTC; Youyi
Author: Youyi Fong [cre], Jun Xu [aut]
Repository: CRAN
Date/Publication: 2024-07-31 15:30:02 UTC

Select Biomarkers from the HVTN 505 Correlates Analysis

Description

See reference.

Usage

data("cc.505")

Format

A data frame with 189 observations on the following 27 variables.

ptid

a character vector

trt

a numeric vector

case

a numeric vector

control

a numeric vector

perprot

a numeric vector

last_uninfec_immun_vst

a numeric vector

racefull

a numeric vector

racefulltxt

a character vector

bmi

a numeric vector

bmicat

a numeric vector

bmicattxt

a character vector

earliest_pos_vst

a numeric vector

level

a character vector

matchlevel

a character vector

samplingfraction

a numeric vector

vst9subcohort

a numeric vector

HIVwk28preunbl

a numeric vector

age

a numeric vector

racecc

a character vector

bhvrisk

a numeric vector

BMI

a numeric vector

stratuminds_vaccs

a numeric vector

stratuminds

a numeric vector

cd4.env.poly

a numeric vector

cd8.env.poly

a numeric vector

mfounders

a numeric vector

wei

a numeric vector

References

Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.


FS-DAM NLDR

Description

Forward stepwise deep autoencoder-based monotone nonlinear dimension reduction.

Usage

fsdam(dat, opt_numCode = ncol(dat), opt_seed = 1, opt_model = "n", opt_gpu = 0, 
opt_k = 100, opt_nEpochs = 10000, 
opt_constr = c("newpenalization", "constrained", "none"),
 opt_tuneParam = 10, opt_penfun = "mean", opt_ortho = 1, opt_earlystop = "no", 
 verbose = FALSE)

## S3 method for class 'fsdam'
 plot(x, which=c("mse", "history", "decoder.func", "scatterplot"),
 k=NULL, dim.1=NULL, dim.2=NULL, col.predict=2, ...)

Arguments

dat

data frame.

opt_numCode

number of components to extract

opt_seed

seed for torch

opt_model

n for newpenalization

opt_gpu

zero-based index of gpu to be used among all gpus. If negative, then no gpu is used

opt_k

number of nodes in the coding/decoding layers

opt_nEpochs

number of epochs for training

opt_constr

constraint string

opt_tuneParam

tuning parameter for monotonicity penalty

opt_penfun

penalize sum or mean

opt_ortho

tuning parameter for orthogonality penalty

opt_earlystop

whether to stop early

verbose

verbose

x

fsdam object

which

which

k

the component to plot

dim.1

index of the first variable

dim.2

index of the second variable

col.predict

color of the predicted curve when which = scatterplot

...

plotting arguments

Details

If the torch python package is not available, this function will stop.

To make sure the right python installation is used, run reticulate::use_python("/app/easybuild/software/Python/3.7.4-foss-2016b/bin/python") in R before running this function for the first time.

It is recommended that dat is scaled before calling fsdam.

References

Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.

Examples


## Not run: 
    
fit=fsdam(hvtn505tier1[1:100,-1], opt_numCode=2, verbose=TRUE)
fit
plot(fit,which="mse")
plot(fit,which="history")


## End(Not run)


HVTN 505 Immune Correlates Tier 1 Dataset

Description

Contains eight immune response variables from the vaccine arm of the HVTN 505 trial.

Usage

data("hvtn505tier1")

Format

A data frame with 150 observations on the following 9 variables.

ptid

a character vector

CD8_ANYVRCENV_PolyfunctionalityScore_score

a numeric vector

IgGw28_env_mdw

a numeric vector

IgGw28_V1V2_mdw

a numeric vector

IgGw28_gp41_mdw

a numeric vector

ADCP1

a numeric vector

R2aConSgp140CFI

a numeric vector

IgAw28_env_mdw

a numeric vector

IgG3w28_env_mdw

a numeric vector

References

Fong, Y, Xu, J. Multi-Stage Simultaneous Deep Autoencoder-based Monotone (MSS-DAM) Nonlinear Dimensionality Reduction Methods, Journal of Computational and Graphical Statistics, in press.

Janes, H.E., Cohen, K.W., Frahm, N., De Rosa, S.C., Sanchez, B., Hural, J. et al (2017), Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial, The Journal of infectious diseases, 215, 1376-1385.

Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E., Yu, C. et al (2018), Vaccine-induced antibody responses modify the association between T-cell immune responses and HIV-1 infection risk in HVTN 505, The Journal of Infectious Diseases, 217, 1280–1288.

Neidich, S.D., Fong, Y., Shen, X., Ashley, V.C., Deal, A., Seaton, K.E. et al (2019), Antibody Fc-effector Functions and IgG3 Associates with Decreased HIV-1 Acquisition Risk, The Journal of Infectious Diseases, 129, 4838-4849.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.