The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of FDRsamplesize2 is to computer the average power and determine the sample size needed to achieve desired FDR and desired average power. For power calculation, the package covers various statistical test settings,including:
You can install FDRsamplesize2 from github:
# install.packages("devtools")
::install_github("yonghui-ni/FDRsamplesize_2.0") devtools
Or from CRAN:
install.packages("FDEsamplesize2")
load the package
library("FDRsamplesize2")
This is an example which shows you how to determine the sample size necessary to identify genes with microarray expression signals that are associated with progression-free survival. A single-predictor Cox regression model will be used to test the association of each gene’s expression with progression-free survival (PFS). We are interested in determining the number of events necessary to identify 80% of genes truly associate with PFS while controlling the FDR at 10% in a setting in which 1% of the genes have a hazard ratio of 2 and a variance of 1.
=log(rep(c(1,2),c(9900,100))) # log hazard ratio for each gene
log.HR=rep(1,10000) # variance of each gene
v=n.fdr.coxph(fdr=0.1, pwr=0.8,logHR=log.HR, v=v, pi0.hat="BH")
res
res#> $n
#> [1] 37
#>
#> $computed.avepow
#> [1] 0.8139159
#>
#> $desired.avepow
#> [1] 0.8
#>
#> $desired.fdr
#> [1] 0.1
#>
#> $input.pi0
#> [1] 0.99
#>
#> $alpha
#> [1] 0.0008879023
#>
#> $n0
#> [1] 36
#>
#> $n1
#> [1] 37
#>
#> $n.its
#> [1] 7
#>
#> $max.its
#> [1] 50
Step by step to calculate power and sample size. This procedure is more flexible for user to plug in average power function of other statistical tests that are not available in FDRsamplesize2.
=9900/10000 # proportion of true null hypothesis
pi0=alpha.power.fdr(fdr=0.1,
adj.ppwr=0.8,
pi0=pi0,
method="BH")
print(adj.p)
#> [1] 0.0008879023
find.sample.size(alpha=adj.p, # Fixed p-value threshold
pwr=0.8, # Power of single α-level test
avepow.func=average.power.coxph, # an R function to compute average power
n0=3, # Lower limit for initial sample size range
n1=6, # Upper limit for initial sample size range
logHR=log(rep(c(1,2),c(9900,100))),
v=rep(1,10000),
max.its=50 # Maximum number of iterations, default is 50
)#> $n
#> [1] 37
#>
#> $computed.avepow
#> [1] 0.8139159
#>
#> $desired.avepow
#> [1] 0.8
#>
#> $alpha
#> [1] 0.0008879023
#>
#> $n.its
#> [1] 7
#>
#> $max.its
#> [1] 50
#>
#> $n0
#> [1] 36
#>
#> $n1
#> [1] 37
To get the fixed p-value threshold \(\alpha\) in alpha.power.fdr function for multiple testing procedure, approximation method options include:
add fdr.avepow() to compute FDR and average power for a given sample size and effect size vector;
add fdr.power.alpha() to compute FDR for given p-value threshold, average power and proportion of tests with a true null
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.