The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Objects of maxlogL
class (outputs from
maxlogL
and maxlogLreg
) stores the estimated
parameters of probability density/mass functions by Maximum Likelihood.
The variance-covariance matrix is computed from Fisher information
matrix, which is obtained by means of the Inverse Hessian matrix of
estimators:
\[\begin{equation} Var(\hat{\boldsymbol{\theta}}) = \mathcal{J}^{-1}(\hat{\boldsymbol{\theta}}) = C(\hat{\boldsymbol{\theta}}), \end{equation}\]
where \(\mathcal{J}(\hat{\boldsymbol{\theta}})\) is the observed Fisher Information Matrix. Hence, the standard errors can be calculated as the square root of the diagonal elements of matrix \(C\), as follows:
\[\begin{equation} SE(\hat{\boldsymbol{\theta}}) = \sqrt{C_{jj}(\hat{\boldsymbol{\theta}})}, \end{equation}\]
To install the package, type the following commands:
if (!require('devtools')) install.packages('devtools')
::install_github('Jaimemosg/EstimationTools', force = TRUE) devtools
In EstimationTools Hessian matrix is computed in the following way:
StdE_Method = optim
, it is estimated through the
optim
function (with option hessian = TRUE
under the hood in maxlogL
or maxlogLreg
function).StdE_Method = numDeriv
, it is calculated with
hessian
function from numDeriv
package.bootstrap_maxlogL
.Additionally, EstimationTools allows implementation of bootstrap for standard error estimation, even if the Hessian computation does not fail.
maxlogL
functionLets fit the following distribution:
\[ \begin{aligned} X &\sim N(\mu, \:\sigma^2) \\ \mu &= 160 \quad (\verb|mean|) \\ \sigma &= 6 \quad (\verb|sd|) \end{aligned} \]
The following chunk illustrates the fitting with Hessian computation
via optim
:
library(EstimationTools)
<- rnorm(n = 10000, mean = 160, sd = 6)
x <- maxlogL(x = x, dist = 'dnorm', control = list(trace = 1),
theta_1 link = list(over = "sd", fun = "log_link"),
fixed = list(mean = 160))
#> 0: 43112.561: 1.00000
#> 1: 32427.035: 2.00000
#> 2: 32176.585: 1.91483
#> 3: 32027.228: 1.75021
#> 4: 32016.630: 1.78713
#> 5: 32016.434: 1.78285
#> 6: 32016.434: 1.78270
#> 7: 32016.434: 1.78270
summary(theta_1)
#> _______________________________________________________________
#> Optimization routine: nlminb
#> Standard Error calculation: Hessian from optim
#> _______________________________________________________________
#> AIC BIC
#> 64032.87 64032.87
#> _______________________________________________________________
#> Estimate Std. Error Z value Pr(>|z|)
#> sd 5.94592 0.04204 141.4 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> _______________________________________________________________
#> Note: p-values valid under asymptotic normality of estimators
#> ---
## Hessian
print(theta_1$fit$hessian)
#> [,1]
#> [1,] 565.708
## Standard errors
print(theta_1$fit$StdE)
#> [1] 0.04204398
print(theta_1$outputs$StdE_Method)
#> [1] "Hessian from optim"
Note that Hessian was computed with no issues. Now, lets check the
aforementioned feature in maxlogL
: the user can implement
bootstrap algorithm available in bootstrap_maxlogL
function. To illustrate this, we are going to create another object
theta_2
:
# Bootstrap
<- maxlogL(x = x, dist = 'dnorm', control = list(trace = 1),
theta_2 link = list(over = "sd", fun = "log_link"),
fixed = list(mean = 160))
#> 0: 43112.561: 1.00000
#> 1: 32427.035: 2.00000
#> 2: 32176.585: 1.91483
#> 3: 32027.228: 1.75021
#> 4: 32016.630: 1.78713
#> 5: 32016.434: 1.78285
#> 6: 32016.434: 1.78270
#> 7: 32016.434: 1.78270
bootstrap_maxlogL(theta_2, R = 200)
#>
#> ...Bootstrap computation of Standard Error. Please, wait a few minutes...
#>
#> --> Done <---
summary(theta_2)
#> _______________________________________________________________
#> Optimization routine: nlminb
#> Standard Error calculation: Bootstrap
#> _______________________________________________________________
#> AIC BIC
#> 64032.87 64032.87
#> _______________________________________________________________
#> Estimate Std. Error Z value Pr(>|z|)
#> sd 5.94592 0.04582 129.8 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> _______________________________________________________________
#> Note: p-values valid under asymptotic normality of estimators
#> ---
## Hessian
print(theta_2$fit$hessian)
#> [,1]
#> [1,] 565.708
## Standard errors
print(theta_2$fit$StdE)
#> [1] 0.04582337
print(theta_2$outputs$StdE_Method)
#> [1] "Bootstrap"
Notice that Standard Errors calculated with optim
(\(0.042044\)) and those calculated with
bootstrap implementation (\(0.045823\))
are approximately equals, but no identical.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.