The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Functions Based on Entropic Statistics
Version: 0.1.0
Maintainer: Jialin Zhang (JZ) <jzhang@math.msstate.edu>
Description: Contains methods for data analysis in entropic perspective. These entropic perspective methods are nonparametric, and perform better on non-ordinal data. Currently, the package has a function HeatMap() for visualizing distributional characteristics among multiple populations (groups).
License: GPL-3
Encoding: UTF-8
Imports: ggplot2, ggrepel, hrbrthemes, tidyverse, dplyr, tidyr, tibble
NeedsCompilation: no
RoxygenNote: 7.2.3
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
Packaged: 2023-05-26 19:09:31 UTC; jz505
Author: Jialin Zhang (JZ) [aut, cph, cre]
Repository: CRAN
Date/Publication: 2023-05-29 17:40:02 UTC

HeatMap for Distribution Visualization

Description

Returns a heatmap to display characteristic information from selected groups.

Usage

HeatMap(
  data_frequency_list,
  orders = seq(0.50, 3, by = 0.01),
  selection = 1:length(data_frequency_list),
  plot_order = selection,
  RowNames = names(data_frequency_list)[plot_order],
  title = "HeatMap",
  x_ticks = round(stats::quantile(orders, c(0,0.25, 0.5, 0.75, 1)), 2),
  plot_margin = margin(0.5,0.2,0.2,1, "cm"),
  text_face = 1,
  fill_colors = c("blue4", "white", "red3"),
  title_text_size = 25,
  label_text_size = 25
)

Arguments

data_frequency_list

A list contains the frequency of data. Each sublist herein is a frequency counts of a group.

orders

Orders of Generalized Shannon's Entropy used in the heatmap.

selection

Indexes of sublist in data_frequency_list that one wishes to include in the heatmap.

plot_order

The order of selected groups in the heatmap, from bottom to top.

RowNames

The display names of the selected groups in the heatmap.

title

The title of the heatmap.

x_ticks

The location of x-axis ticks on the heatmap.

plot_margin

The plot margins of the final heatmap.

text_face

The text style in the heatmap. 1 = “plain”, 2 = “italic”, 3 = “bold”, and 4 = “bold. italic”.

fill_colors

Three colors in the heatmap that represent lower, medium, and upper values.

title_text_size

Title text size in the heatmap.

label_text_size

Labels text size in the heatmap.

Details

This is a preliminary tool to identify distributional information from multiple groups simultaneuously without any parametric assumptions.

Value

A heatmap plot made with ggplot2.

Author(s)

Jialin Zhang (JZ) at jzhang at math.msstate.edu.

Examples

## Creating data
binom_n <- 10
sample_size <- 1000
sample_1 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.1))
sample_2 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.2))
sample_3 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.3))
sample_4 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.4))
sample_5 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.5))
sample_6 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.6))
sample_7 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.7))
sample_8 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.8))
sample_9 <- table(stats::rbinom(size=binom_n, n=sample_size, 0.9))
sample_poisson_1 <- stats::rpois(sample_size, 1)
sample_poisson_2 <- stats::rpois(sample_size, 2)
sample_poisson_3 <- stats::rpois(sample_size, 3)
sample_poisson_4 <- stats::rpois(sample_size, 4)
sample_poisson_5 <- stats::rpois(sample_size, 5)
sample_poisson_6 <- stats::rpois(sample_size, 6)
sample_poisson_7 <- stats::rpois(sample_size, 7)
sample_poisson_8 <- stats::rpois(sample_size, 8)
sample_poisson_9 <- stats::rpois(sample_size, 9)
data_samples <- list(binom_0.1 = sample_1, binom_0.2 = sample_2, binom_0.3 = sample_3,
binom_0.4 = sample_4, binom_0.5 = sample_5, binom_0.6 = sample_6, binom_0.7 = sample_7,
binom_0.8 = sample_8, binom_0.9 = sample_9, Poisson_1 = sample_poisson_1,
Poisson_2 = sample_poisson_2, Poisson_3 = sample_poisson_3, Poisson_4 = sample_poisson_4,
Poisson_5 = sample_poisson_5, Poisson_6 = sample_poisson_6, Poisson_7 = sample_poisson_7,
Poisson_8 = sample_poisson_8, Poisson_9 = sample_poisson_9)

## Obtain the heatmap for all sublists in the data.
HeatMap(data_samples)

## Obtain the heatmap for six random sublists in the data.
HeatMap(data_samples, selection = c(sample(1:length(data_samples), 6)))

## Obtain the heatmap for the binomial sublists in the data.
HeatMap(data_samples, selection = 1:9)

## Obtain the heatmap for the first 4 poisson sublists in the data.
HeatMap(data_samples, selection = 10:13)

## Obtain the heatmap for the last 5 poisson sublists in the data.
HeatMap(data_samples, selection = 14:18)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.