The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Econometrics Model Building
Version: 0.1.1
Description: An intuitive and user-friendly package designed to aid undergraduate students in understanding and applying econometric methods in their studies, Tailored specifically for Econometrics and Regression Modeling courses, it provides a practical toolkit for modeling and analyzing econometric data with detailed inference capabilities.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.3.2
Imports: car, forecast, ggplot2, insight, lmtest, moments, stats, tibble, tseries
Depends: R (≥ 2.10)
LazyData: true
Suggests: knitr
NeedsCompilation: no
Packaged: 2025-01-24 05:15:02 UTC; Mutua Sam
Author: Mutua Kilai ORCID iD [aut, cre]
Maintainer: Mutua Kilai <kilaimutua@gmail.com>
Repository: CRAN
Date/Publication: 2025-01-28 16:30:06 UTC

Plots ACF of a univariate time series

Description

Plots ACF of a univariate time series

Usage

ACF_PLOT(x, lag.max = NULL)

Arguments

x

numeric vector

lag.max

maximum lag to calculate the acf

Value

a plot of the acf vs lag

Author(s)

Mutua Kilai

Examples

data(keconomy)
attach(keconomy)
ACF_PLOT(UR)




Plots PACF of a univariate time series

Description

Plots PACF of a univariate time series

Usage

PACF_PLOT(x, lag.max = NULL)

Arguments

x

a numeric vector

lag.max

maximum lag to calculate pacf

Value

a plot of the pacf vs lag

Author(s)

Mutua Kilai

Examples

data(keconomy)
attach(keconomy)
PACF_PLOT(UR)




Check model for residual independence

Description

Checks model for independence of residuals

Usage

autocorrelation_assumption(model)

Arguments

model

A lm object

Value

returns the p-value for the test

Author(s)

Mutua Kilai

Examples

model <- lm(pi ~ hs + ps, data = eduperform)
autocorrelation_assumption(model)

Select Optimal Model based on BIC

Description

Select Optimal Model based on BIC

Usage

best_arima(data, max_p = 5, max_d = 2, max_q = 5)

Arguments

data

A univariate ts object

max_p

Maximum AR order

max_d

Maximum differencing order

max_q

Maximum MA order

Value

A list containing the optimal model results and the BIC value

Examples

data(keconomy)
attach(keconomy)
best_arima(UR, max_p = 5, max_d = 2, max_q = 5)


Checking Overall Model Significance

Description

Checking Overall Model Significance

Usage

check_model_sig(data, y, x)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

A set of independent variables

Value

p-value with a statement on whether the model is significant or not

Author(s)

Mutua Kilai

Examples

check_model_sig(data = eduperform, "pi", c("hs", "ps"))



Check Series for Weak Stationarity

Description

Check Series for Weak Stationarity

Usage

check_stationarity(x)

Arguments

x

A numeric vector or time series object

Value

p-value of the test

Author(s)

Mutua Kilai

Examples

data(keconomy)
attach(keconomy)
check_stationarity(UR)


Student Performance Data

Description

Student performance dataset is a dataset designed to examine the factors influencing academic student performance.

Usage

eduperform

Format

eduperform

A data frame with 10000 rows and 6 columns:

hs

hours studied

ps

previous score

ea

extracurricula activities

sh

sleep hours

sqpp

sample question paper practiced

pi

performance Index

...

Source

https://www.kaggle.com/datasets/nikhil7280/student-performance-multiple-linear-regression?resource=download


Fit ARIMA models to univariate data

Description

Fit ARIMA models to univariate data

Usage

fit_arima(data, p, d, q)

Arguments

data

a univariate class object or a vector

p

AR order

d

differencing order

q

MA order

Value

A tibble containing the estimate, SE and p-value

Examples

data(keconomy)
attach(keconomy)
fit_arima(UR, p=2,d=0,q=3)


Get variance of the model coefficients

Description

Get variance of the model coefficients

Usage

get_coefficients_variance(data, y, x)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

A set of independent variables

Value

Tibble containing the variances

Author(s)

Mutua Kilai

Examples

get_coefficients_variance(data = eduperform, "pi", c("hs", "ps"))



Confidence Intervals of Model Parameters

Description

Confidence Intervals of Model Parameters

Usage

get_confint(data, y, x, level = 0.95)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

A set of independent variables

level

level of significance can be 0.95, 0.90 etc. default is 0.95

Value

tibble containing the lower and upper confidence intervals

Author(s)

Mutua Kilai

Examples

get_confint(data = eduperform, "pi", c("hs", "ps"))



Obtaining only significant predictors from a model

Description

Obtaining only significant predictors from a model

Usage

get_significant_predictors(data, y, x, alpha = 0.05)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

A set of independent variables

alpha

desired alpha level. default is 0.05

Value

A tibble containing the significant predictors

Author(s)

Mutua Kilai

Examples

get_significant_predictors(data = eduperform, "pi", c("hs", "ps"))




Checking heteroscedasticity assumption

Description

Checking heteroscedasticity assumption

Usage

heteroscedasticity_assumption(model)

Arguments

model

A lm model object

Value

The p-value of the test statistic.

Author(s)

Mutua Kilai

Examples

model <- lm(pi ~ hs + ps, data = eduperform)
heteroscedasticity_assumption(model)


Kenya Unemployment Rate and GDP Growth rate for 1999-2023

Description

Annual Time Series data for Kenyan Economy showing the unemployment rate and GDP Growth Rate.

Usage

keconomy

Format

keconomy

A data frame with 25 rows and 3 columns:

Year

Year; from 1999 to 2023

UR

Unemployment Rate

GR

GDP Growth Rate

Source

https://www.statista.com


Multicollinearity Assumption

Description

Multicollinearity Assumption

Usage

multicollinearity_assumption(model)

Arguments

model

A lm object

Value

A tibble containing the VIF and Tolerance values

Author(s)

Mutua Kilai

Examples

model <- lm(pi ~ hs + ps, data = eduperform)
multicollinearity_assumption(model)



Checking normality of residuals

Description

Checking normality of residuals

Usage

normality_assumption(model)

Arguments

model

A lm model object

Value

The p-value of the test statistic.

Author(s)

Mutua Kilai

Examples

model <- lm(pi ~ hs + ps, data = eduperform)
normality_assumption(model)


Fitting a simple or multiple linear regression

Description

Fitting a simple or multiple linear regression

Usage

ols_model(data, y, x)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

Set of independent variables

Value

A tibble of the coefficients, standard errors, t-statistics and p-value

Author(s)

Mutua Kilai

Examples

ols_model(data = eduperform, "pi", c("hs", "ps"))



F-statistic attributes

Description

F-statistic attributes

Usage

ols_model_sig(data, y, x)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

Set of independent variables

Value

A tibble containing the number of observations, F-Statistic, degrees of freedom and p-value

Author(s)

Mutua Kilai

Examples

ols_model_sig(data = eduperform, "pi", c("hs", "ps"))




Model Summary Statistics

Description

Model Summary Statistics

Usage

ols_model_stats(data, y, x)

Arguments

data

A data frame containing the variables to use

y

The dependent variable

x

The independent variables

Value

A tibble containing model summary stats: R-Squared, Adjusted R-Squared, AIC and BIC

Author(s)

Mutua Kilai

Examples

ols_model_stats(data = eduperform, "pi", c("hs", "ps"))




Prediction from new observations

Description

Prediction from new observations

Usage

predict_dep_var(model, new_data, level = 0.95)

Arguments

model

an lm object

new_data

data frame containing the new set of predictors

level

confidence level, default 0.95

Value

A tibble containing the predicted value and the upper and lower CI

Author(s)

Mutua Kilai

Examples

model <- lm(pi ~ hs + ps, data = eduperform)
newdata <- data.frame(hs =c(2,3,4),ps = c(23,24,12))
predict_dep_var(model, new_data = newdata, level = 0.95)



Choosing Best Model Based on AIC, BIC and Adjusted R Squared

Description

Choosing Best Model Based on AIC, BIC and Adjusted R Squared

Usage

select_optimal_model(models, criterion = "AIC")

Arguments

models

a list of models

criterion

The criterion to select optimal model. Default AIC

Value

list of the results and best model

Author(s)

Mutua Kilai

Examples

data(eduperform)
model1 <- lm(pi ~ hs, data = eduperform)
model2 <- lm(pi ~ hs + ps, data = eduperform)
model3 <- lm(pi ~ hs + ps + sh, data = eduperform)
models <- list(model1, model2, model3)

select_optimal_model(models, criterion= "AIC")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.