The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

EEMDlstm: EEMD Based LSTM Model for Time Series Forecasting

Forecasting univariate time series with ensemble empirical mode decomposition (EEMD) with long short-term memory (LSTM). For method details see Jaiswal, R. et al. (2022). <doi:10.1007/s00521-021-06621-3>.

Version: 0.1.0
Depends: R (≥ 2.10)
Imports: keras, tensorflow, reticulate, tsutils, BiocGenerics, utils, graphics, magrittr, Rlibeemd, TSdeeplearning
Published: 2022-09-26
DOI: 10.32614/CRAN.package.EEMDlstm
Author: Kapil Choudhary [aut, cre], Girish Kumar Jha [aut, ths, ctb], Ronit Jaiswal [ctb], Rajeev Ranjan Kumar [ctb]
Maintainer: Kapil Choudhary <kapiliasri at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: EEMDlstm results

Documentation:

Reference manual: EEMDlstm.pdf

Downloads:

Package source: EEMDlstm_0.1.0.tar.gz
Windows binaries: r-devel: EEMDlstm_0.1.0.zip, r-release: EEMDlstm_0.1.0.zip, r-oldrel: EEMDlstm_0.1.0.zip
macOS binaries: r-release (arm64): EEMDlstm_0.1.0.tgz, r-oldrel (arm64): EEMDlstm_0.1.0.tgz, r-release (x86_64): EEMDlstm_0.1.0.tgz, r-oldrel (x86_64): EEMDlstm_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EEMDlstm to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.