The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This track is dedicated to survival prediction tasks.
First, initialize the prognostic modeling system.
models_pro
The models_pro
function trains one or more standard
survival models. For this demonstration, we’ll run a subset.
# Run a subset of available prognostic models
results_all_pro <- models_pro(train_pro, model = c("lasso_pro", "rsf_pro"))
#> Running model: lasso_pro
#> Running model: rsf_pro
# Print summary for Random Survival Forest
print_model_summary_pro("rsf_pro", results_all_pro$rsf_pro)
#>
#> --- rsf_pro Prognosis Model (on Training Data) Metrics ---
#> C-index: 0.8702
#> Time-dependent AUROC (years 1, 3, 5): 0.8041, 0.8170, 0.7559
#> Average Time-dependent AUROC: 0.7923
#> KM Group HR (High vs Low): 15.1349 (p-value: 1.509e-16, Cutoff: -1132.7747)
#> --------------------------------------------------
bagging_pro
)Builds a Bagging ensemble for survival models.
# Create a Bagging ensemble with lasso as the base survival model
# n_estimators is reduced for faster execution.
bagging_lasso_pro_results <- bagging_pro(train_pro, base_model_name = "lasso_pro", n_estimators = 5, seed = 123)
#> Running Bagging model: Bagging_pro (base: lasso_pro)
print_model_summary_pro("Bagging (LASSO)", bagging_lasso_pro_results)
#>
#> --- Bagging (LASSO) Prognosis Model (on Training Data) Metrics ---
#> Ensemble Type: Bagging (Base: lasso_pro, Estimators: 5)
#> C-index: 0.7330
#> Time-dependent AUROC (years 1, 3, 5): 0.5318, 0.6148, 0.6028
#> Average Time-dependent AUROC: 0.5831
#> KM Group HR (High vs Low): 3.2048 (p-value: 2.22e-08, Cutoff: 0.3661)
#> --------------------------------------------------
stacking_pro
)Builds a Stacking ensemble for survival models.
# Create a Stacking ensemble with lasso as the meta-model
stacking_lasso_pro_results <- stacking_pro(
results_all_models = results_all_pro,
data = train_pro,
meta_model_name = "lasso_pro"
)
#> Running Stacking model: Stacking_pro (meta: lasso_pro)
print_model_summary_pro("Stacking (LASSO)", stacking_lasso_pro_results)
#>
#> --- Stacking (LASSO) Prognosis Model (on Training Data) Metrics ---
#> Ensemble Type: Stacking (Meta: lasso_pro, Base models used: rsf_pro, lasso_pro)
#> C-index: 0.8814
#> Time-dependent AUROC (years 1, 3, 5): 0.7389, 0.8173, 0.8510
#> Average Time-dependent AUROC: 0.8024
#> KM Group HR (High vs Low): 19.5197 (p-value: 3.159e-18, Cutoff: 18.0175)
#> --------------------------------------------------
apply_pro
)Generate prognostic scores for a new dataset.
# Apply the trained stacking model to the test set
pro_pred_new <- apply_pro(
trained_model_object = stacking_lasso_pro_results$model_object,
new_data = test_pro,
time_unit = "day"
)
#> Applying model on new data...
# Evaluate the new prognostic scores
eval_pro_new <- evaluate_predictions_pro(
prediction_df = pro_pred_new,
years_to_evaluate = c(1,3, 5)
)
print(eval_pro_new)
#> $C_index
#> [1] 0.5778903
#>
#> $AUROC_Years
#> $AUROC_Years$`1`
#> [1] 0.4968283
#>
#> $AUROC_Years$`3`
#> [1] 0.5527718
#>
#> $AUROC_Years$`5`
#> [1] 0.566955
#>
#>
#> $AUROC_Average
#> [1] 0.5388517
#>
#> $KM_HR
#> [1] 1.862771
#>
#> $KM_P_value
#> [1] 0.04657938
#>
#> $KM_Cutoff
#> [1] 17.41586
figure_pro
)Generate Kaplan-Meier (KM) and time-dependent ROC (tdROC) curves.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.