The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

DrBats Dimension Reduction

(see list of authors below)

2022-02-02

Overview

This document is part of the “DrBats” project whose goal is to implement exploratory statistical analysis on large sets of data with uncertainty. The idea is to visualize the results of the analysis in a way that explicitely illustrates the uncertainty in the data.

The “DrBats” project applies a Bayesian Latent Factor Model.

This project involves the following persons, listed in alphabetical order :

Dimension reduction of a longitudinal dataset

On simulated data using drbats.simul()

require(DrBats)
require(ggplot2)
st_data <- drbats.simul(N = 10, 
                 t.range = c(0, 1000),
                 b.range = c(0.2, 0.4),
                 c.range = c(0.6, 0.8),
                 b.sd = 0.5,
                 c.sd = 0.5,
                 y.range = c(-5, 5),
                 sigma2 = 0.2,
                 breaks = 15,
                 data.type = 'sparse.tend')
mycol<-c("#ee204d", "#1f75fe", "#1cac78", "#ff7538", "#b4674d", "#926eae",
                 "#fce883", "#000000", "#78dbe2", "#6e5160", "#ff43a4")

For details check out the DrBats Data Simulation and Projection vignette.

Resulting eigenvalues:

eigenval <- st_data$proj.pca$lambda.perc
barplot(eigenval, ylim = c(0, 1), col = mycol[1:length(eigenval)])

Plot of the first eigenvectors :

windows <- st_data$proj.pca$Xt.proj$windows[-15]
eigenv <- data.frame(windows, st_data$proj.pca$U)
ggplot(eigenv, aes(x = windows, y = eigenv[ , 2])) +
  geom_step(aes(colour = mycol[1])) +
  geom_step(aes(x = windows, y = eigenv[ , 3], colour = mycol[2])) +
  geom_step(aes(x = windows, y = eigenv[ , 4], colour = mycol[3])) +
  scale_x_continuous(name = " ") +
  scale_y_continuous(name =  " ") +
  scale_colour_discrete(labels=c("Eigenvector 1", "Eigenvector 2", "Eigenvector 3"),
                        name = " ")

On real data

suppressPackageStartupMessages(require(fda))
Canada.temp <- CanadianWeather$monthlyTemp[ , 1:10]
matplot(Canada.temp, type = 'l', xaxt = "n", xlab = "", ylab = "Temp °C", col = mycol[1:10],
        lwd = 2)
axis(side = 1, labels = rownames(Canada.temp), at = 1:12)

The eigenvalues :

Canada.pca <- pca.Deville(t(Canada.temp), t = t(matrix(rep(1:12, 10), nrow = 12, ncol = 10)), 
                          t.range = c(1, 12), breaks = 13)
barplot(Canada.pca$perc.lambda, col = mycol[1:12])

And the eigenvectors :

eigenv <- data.frame(windows = 1:(13-1), Canada.pca$U.histo) 

ggplot(eigenv, aes(x = windows, y = eigenv[ , 2])) +
  geom_step(aes(colour = mycol[1])) +
  geom_step(aes(x = windows, y = eigenv[ , 3], colour = mycol[2])) +
  geom_step(aes(x = windows, y = eigenv[ , 4], colour = mycol[3])) +
  scale_x_continuous(name = " ") +
  scale_y_continuous(name =  " ") +
  scale_colour_discrete(labels=c("Eigenvector 1", "Eigenvector 2", "Eigenvector 3"),
                        name = " ")

We can do a weighted PCA using the function weighted.Deville(), or Co-inertia analysis using coinertia.drbats()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.