The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Doubly Truncated Data Analysis, Non Iterative
Version: 1.0.1
Maintainer: José Carlos Soage González <jsoage@uvigo.es>
Description: Non-iterative estimator for the cumulative distribution of a doubly truncated variable. de Uña-Álvarez J. (2018) <doi:10.1007/978-3-319-73848-2_37>.
Depends: R (≥ 3.3.0)
License: GPL-2
Encoding: UTF-8
RoxygenNote: 7.1.2
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
URL: https://github.com/sidoruvigo/DTDA.ni
NeedsCompilation: no
Author: Jacobo de Uña Álvarez [aut], José Carlos Soage González [cre]
Packaged: 2022-04-12 08:12:26 UTC; User
Repository: CRAN
Date/Publication: 2022-04-12 08:32:29 UTC

Package ‘DTDA.ni’

Description

Non-iterative estimator for the cumulative distribution of a doubly truncated variable, see de Uña-Álvarez (2018). Restricted to interval sampling.

Details

Documentation for package ‘DTDA.ni’ version 1.0

Value

Acknowledgements

Author(s)

References

de Uña-Álvarez J. (2018) A Non-iterative Estimator for Interval Sampling and Doubly Truncated Data. In: Gil E., Gil E., Gil J., Gil M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham, pp. 387-400.

See Also

Useful links:


Doubly Truncated Data Analysis, Non Iterative

Description

This function computes a non-iterative estimator for the cumulative distribution of a doubly truncated variable, see de Uña-Álvarez (2018). The function is restricted to interval sampling.

Usage

DTDAni(x, u, tau)

Arguments

x

Numeric vector corresponding the variable of ultimate interest.

u

Numeric vector corresponding to the left truncation variable.

tau

Sampling interval width. The right truncation values will be internally calculated as v = u + tau.

Details

The function DTDAni is adapted to the presence of ties. It can be used to compute the direct (Fd) and the reverse (Fr) estimators; see the example below. Both curves are valid estimators for the cumulative distribution (F) of the doubly truncated variable. Weighted estimators Fw = w*Fd + (1-w)*Fr with 0<w<1 are valid too, the choice w=1/2 being recommended in practice (de Uña-Álvarez, 2018).

Value

A list containing:

x

The distinct values of the variable of interest.

nx

The absloute frequency of each x value.

cumprob

The estimated cumulative probability for each x value.

P

The auxiliary Pi used in the calculation of the estimator.

L

The auxiliary Li used in the calculation of the estimator.

Acknowledgements

Author(s)

References

de Uña-Álvarez J. (2018) A Non-iterative Estimator for Interval Sampling and Doubly Truncated Data. In: Gil E., Gil E., Gil J., Gil M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham

Examples

## Not run: 
# Generating data which are doubly truncated:
N <- 250
x0 <- runif(N)             # Original data
u0 <- runif(N, -0.25, 0.5) # Left-truncation times
tau <- 0.75                # Interval width
v0 <- u0 + tau

x <- x0[u0 <= x0 & x0 <= v0]
u <- u0[u0 <= x0 & x0 <= v0]
v <- v0[u0 <= x0 & x0 <= v0]
n <- length(x)  # Final sample size after the interval sampling

# Create an object with DTDAni function
res <- DTDAni(x, u, tau)
plot(res)

abline(a = 0, b = 1, col = "green")  #the true cumulative distribution

# Calculating the reverse estimator:
res2 <- DTDAni(-x, -u - tau, tau)
lines(-res2$x, 1 - res2$cumprob, type = "s", col = "blue", lty = 2)

# Weigthed estimator (recommended):

w <- 1/2

k <- length(res$x)

Fw <- w * res$cumprob + (1 - w) * (1 - res2$cumprob[k:1])
lines(res$x, Fw, type = "s", col = 2)


# Using res$P and res$L to compute the estimator:

k <- length(res$x)
F <- rep(1, k)
for (i in 2:k){
  F[i] <- (F[i - 1] - res$P[i - 1]) / res$L[i - 1] + res$P[i - 1]
}

F0 <- F/max(F)  # This is equal to res$cumprob

## End(Not run)


plot.DTDAni

Description

S3 method to plot a DTDAni object by using the generic plot function.

Usage

## S3 method for class 'DTDAni'
plot(x, ecdf = FALSE, ...)

Arguments

x

DTDAni object.

ecdf

Whether to display the ordinary empirical cumulative distribution function or not. Default = FALSE.

...

Aditional parameters.

Acknowledgements

Author(s)

References

de Uña-Álvarez J. (2018) A Non-iterative Estimator for Interval Sampling and Doubly Truncated Data. In: Gil E., Gil E., Gil J., Gil M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham, pp. 387-400.

Examples


## Not run: 
N <- 250
x0 <- runif(N)             # Original data
u0 <- runif(N, -0.25, 0.5) # Left-truncation times
tau <- 0.75                # Interval width
v0 <- u0 + tau

x <- x0[u0 <= x0 & x0 <= v0]
u <- u0[u0 <= x0 & x0 <= v0]
v <- v0[u0 <= x0 & x0 <= v0]
n <- length(x)  # Final sample size after the interval sampling
res <- DTDAni(x, u , tau)
plot(res)
plot(res, ecdf = TRUE)

## End(Not run)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.