The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

DGLMExtPois

DGLMExtPois is a package that contains statistical functions for the model estimation, dispersion testing and diagnosis of hyper-Poisson and Conway-Maxwell-Poisson regression models.

Installation

You can install the released version of DGLMExtPois from CRAN with:

install.packages("DGLMExtPois")

and the development version from github with:

devtools::install_github("franciscomartinezdelrio/DGLMExtPois")

Example

This is a basic example which shows you how to solve a common problem:

library(DGLMExtPois)
library(Ecdat)
#> Loading required package: Ecfun
#> 
#> Attaching package: 'Ecfun'
#> The following object is masked from 'package:base':
#> 
#>     sign
#> 
#> Attaching package: 'Ecdat'
#> The following object is masked from 'package:datasets':
#> 
#>     Orange
Bids$size.sq <- Bids$size ^ 2
hP.bids <- glm.hP(formula.mu = numbids ~ leglrest + rearest + finrest +
                    whtknght + bidprem + insthold + size + size.sq +
                    regulatn,
                    formula.gamma = numbids ~ 1,
                    data = Bids)
summary(hP.bids)
#> 
#> Call:
#> glm.hP(formula.mu = numbids ~ leglrest + rearest + finrest + 
#>     whtknght + bidprem + insthold + size + size.sq + regulatn, 
#>     formula.gamma = numbids ~ 1, data = Bids)
#> 
#> Mean model coefficients (with log link):
#>              Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  1.042145   0.387027   2.693  0.00709 ** 
#> leglrest     0.240887   0.109638   2.197  0.02801 *  
#> rearest     -0.268646   0.144930  -1.854  0.06379 .  
#> finrest      0.104245   0.163049   0.639  0.52260    
#> whtknght     0.487929   0.110133   4.430 9.41e-06 ***
#> bidprem     -0.709086   0.273832  -2.589  0.00961 ** 
#> insthold    -0.363993   0.304749  -1.194  0.23232    
#> size         0.173023   0.048291   3.583  0.00034 ***
#> size.sq     -0.007371   0.002479  -2.973  0.00295 ** 
#> regulatn    -0.008751   0.118167  -0.074  0.94097    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Dispersion model coefficients (with logit link):
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  -2.6219     0.4766  -5.501 3.77e-08 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> AIC: 362.3
AIC(hP.bids)
#> [1] 362.3072
BIC(hP.bids)
#> [1] 393.5063
coef(hP.bids)
#> $mean_model
#>  (Intercept)     leglrest      rearest      finrest     whtknght      bidprem 
#>  1.042145307  0.240886951 -0.268645993  0.104245100  0.487928599 -0.709086033 
#>     insthold         size      size.sq     regulatn 
#> -0.363993485  0.173023482 -0.007370863 -0.008751012 
#> 
#> $dispersion_model
#> (Intercept) 
#>   -2.621855
confint(hP.bids)
#>                   2.5 %       97.5 %
#> (Intercept)  0.28358635  1.800704268
#> leglrest     0.02600000  0.455773898
#> rearest     -0.55270282  0.015410837
#> finrest     -0.21532507  0.423815275
#> whtknght     0.27207160  0.703785596
#> bidprem     -1.24578669 -0.172385379
#> insthold    -0.96129006  0.233303088
#> size         0.07837414  0.267672828
#> size.sq     -0.01223058 -0.002511151
#> regulatn    -0.24035456  0.222852539
head(fitted(hP.bids))
#>        1        2        3        4        5        6 
#> 2.733621 1.331997 2.196977 1.176840 1.231121 2.088129
head(residuals(hP.bids))
#>          1          2          3          4          5          6 
#> -0.5421896 -1.7307986 -1.0424542 -0.2501029 -0.3175111  0.8264357
CMP.bids <- glm.CMP(formula.mu = numbids ~ leglrest + rearest + finrest +
                    whtknght + bidprem + insthold + size + size.sq +
                    regulatn,
                    formula.nu = numbids ~ 1,
                    data = Bids)
summary(CMP.bids)
#> 
#> Call:
#> glm.CMP(formula.mu = numbids ~ leglrest + rearest + finrest + 
#>     whtknght + bidprem + insthold + size + size.sq + regulatn, 
#>     formula.nu = numbids ~ 1, data = Bids)
#> 
#> Mean model coefficients (with log link):
#>              Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  0.990004   0.435140   2.275 0.022898 *  
#> leglrest     0.267903   0.122808   2.181 0.029148 *  
#> rearest     -0.173273   0.154704  -1.120 0.262703    
#> finrest      0.067916   0.174300   0.390 0.696794    
#> whtknght     0.481172   0.131654   3.655 0.000257 ***
#> bidprem     -0.685007   0.307470  -2.228 0.025889 *  
#> insthold    -0.367923   0.346620  -1.061 0.288481    
#> size         0.179279   0.047604   3.766 0.000166 ***
#> size.sq     -0.007580   0.002483  -3.052 0.002270 ** 
#> regulatn    -0.037561   0.130235  -0.288 0.773031    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Dispersion model coefficients (with logit link):
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)   0.5621     0.1534   3.665 0.000248 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> AIC: 382.2
AIC(CMP.bids)
#> [1] 382.1753
BIC(CMP.bids)
#> [1] 413.3744
coef(CMP.bids)
#> $mean_model
#>  (Intercept)     leglrest      rearest      finrest     whtknght      bidprem 
#>  0.990003872  0.267902606 -0.173272510  0.067916284  0.481171553 -0.685006796 
#>     insthold         size      size.sq     regulatn 
#> -0.367923118  0.179279126 -0.007580393 -0.037561467 
#> 
#> $dispersion_model
#> (Intercept) 
#>   0.5620821
confint(CMP.bids)
#>                   2.5 %       97.5 %
#> (Intercept)  0.13714473  1.842863012
#> leglrest     0.02720360  0.508601611
#> rearest     -0.47648689  0.129941873
#> finrest     -0.27370514  0.409537708
#> whtknght     0.22313460  0.739208506
#> bidprem     -1.28763746 -0.082376130
#> insthold    -1.04728529  0.311439049
#> size         0.08597638  0.272581868
#> size.sq     -0.01244781 -0.002712976
#> regulatn    -0.29281835  0.217695412
head(fitted(CMP.bids))
#>        1        2        3        4        5        6 
#> 2.736143 1.296889 2.140255 1.189666 1.205770 2.092416
head(residuals(CMP.bids))
#>          1          2          3          4          5          6 
#> -0.5646967 -1.3669047 -0.9753079 -0.2069397 -0.2233074  0.7839429

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.