The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

CoRpower’s Algorithms for Simulating Placebo Group and Baseline Immunogenicity Predictor Data

Introduction

The CoRpower package assumes that \(P(Y^{\tau}(1)=Y^{\tau}(0))=1\) for the biomarker sampling timepoint \(\tau\), which renders the CoR parameter \(P(Y=1 \mid S=s_1, Z=1, Y^{\tau}=0)\) equal to \(P(Y=1 \mid S=s_1, Z=1, Y^{\tau}(1)=Y^{\tau}(0)=0)\), which links the CoR and biomarker-specific treatment efficacy (TE) parameters. Estimation of the latter requires outcome data in placebo recipients, and some estimation methods additionally require availability of a baseline immunogenicity predictor (BIP) of \(S(1)\), the biomarker response at \(\tau\) under assignment to treatment. In order to link power calculations for detecting a correlate of risk (CoR) and a correlate of TE (coTE), CoRpower allows to export simulated data sets that are used in CoRpower’s calculations and that are extended to include placebo-group and BIP data for harmonized use by methods assessing biomarker-specific TE. This vignette aims to describe CoRpower’s algorithms, and the underlying assumptions, for simulating placebo-group and BIP data. The exported data sets include full rectangular data to allow the user to consider various biomarker sub-sampling designs, e.g., different biomarker case:control sampling ratios, or case-control vs. case-cohort designs.


Algorithms for Simulating Placebo Group Data

Trichotomous \(\, X\) and \(\, S(1)\) Using Approach 1

  1. Specify \(P^{lat}_0\), \(P^{lat}_2\), \(P_0\), \(P_2\), \(risk_0\), \(n_{cases, 0}\), \(n_{controls, 0}\), \(K\)
    • \(N_{complete, 0} = n_{cases, 0} + n_{controls, 0}\)
  2. Specify \(Sens\), \(Spec\), \(FP^0\), and \(FN^2\)
  3. Number of observations in each latent subgroup: \(N_x = N_{complete, 0} P^{lat}_x\)
  4. Simulate \(X\) under the assumption of homogeneous risk in the placebo group:
    • Cases: \(\left(n_{cases, 0}(0),n_{cases,0}(1),n_{cases,0}(2)\right) \sim \mathsf{Mult}(n_{cases,0},(p_0,p_1,p_2))\), where \[\begin{align*} p_x=P(X=x|Y=1,Y^{\tau}=0,Z=0) &= P(X=x|Y(0)=1)\\ &= \frac{P(Y(0)=1|X=x)P(X=x)}{P(Y(0)=1)}\\ &= \frac{risk^{lat}_0(x)P^{lat}_{x}}{risk_0}\\ &= P^{lat}_{x} \quad \text{because } risk^{lat}_0(x)=risk_0 \end{align*}\]
    • Controls: \(\left(n_{controls,0}(0),n_{controls,0}(1),n_{controls,0}(2)\right) \sim \mathsf{Mult}(n_{controls,0},(p_0,p_1,p_2))\), where \[\begin{align*} p_x=P(X=x|Y=0,Y^{\tau}=0,Z=0) &= P(X=x|Y(0)=0)\\ &= \frac{P(Y(0)=0|X=x)P(X=x)}{P(Y(0)=0)}\\ &= \frac{(1-risk^{lat}_0(x))P^{lat}_{x}}{(1-risk_0)}\\ &= P^{lat}_{x} \quad \text{because } risk^{lat}_0(x)=risk_0 \end{align*}\]
    • \(n_{controls,0}(x) = N_x - n_{cases,0}(x)\)
  5. Simulate \(Y\): Vector with \(n_{cases,0}(0)\) 1’s, followed by \(n_{controls,0}(0)\) 0’s, followed by \(n_{cases,0}(1)\) 1’s, etc.
  6. Simulate \(S(1)\): For each of the \(N_x\) subjects, generate \(S(1)\) by a draw from \(\mathsf{Mult}(1,(p_0,p_1,p_2))\), where \(p_k=P(S(1)=k|X=x)\) is given by \(Sens, Spec\), etc.

Trichotomous \(\, X\) and \(\, S(1)\) Using Approach 2

  1. Specify \(P^{lat}_0\), \(P^{lat}_2\), \(P_0\), \(P_2\), \(risk_0\), \(N_{complete,0}\), \(n_{cases,0}\), \(n^S_{cases}\), \(K\)
  2. Specify \(\rho\) and \(\sigma^2_{obs}\)
  3. Calculation of \((Sens, Spec, FP^0, FP^1, FN^1, FN^2)\):
    1. Assuming the classical measurement error model, where \(X^{\ast} \sim \mathsf{N}(0,\sigma^2_{tr})\), solve \[P^{lat}_0 = P(X^{\ast} \leq \theta_0) \quad \textrm{and} \quad P^{lat}_2 = P(X^{\ast} > \theta_2)\] for \(\theta_0\) and \(\theta_2\)
    2. Generate \(B\) realizations of \(X^{\ast}\) and \(S^{\ast} = X^{\ast} + e\), where \(e \sim \mathsf{N}(0,\sigma^2_{e})\), and \(X^{\ast}\) independent of \(e\) + \(B = 20,000\) by default
    3. Using \(\theta_0\) and \(\theta_2\) from Step i., define \[\begin{align*} Spec(\phi_0) &= P(S^{\ast} \leq \phi_0 \mid X^{\ast} \leq \theta_0)\\ FN^1(\phi_0) &= P(S^{\ast} \leq \phi_0 \mid X^{\ast} \in (\theta_0,\theta_2])\\ FN^2(\phi_0) &= P(S^{\ast} \leq \phi_0 \mid X^{\ast} > \theta_2)\\ Sens(\phi_2) &= P(S^{\ast} > \phi_2 \mid X^{\ast} > \theta_2)\\ FP^1(\phi_2) &= P(S^{\ast} > \phi_2 \mid X^{\ast} \in (\theta_0,\theta_2])\\ FP^0(\phi_2) &= P(S^{\ast} > \phi_2 \mid X^{\ast} \leq \theta_0) \end{align*}\]

      Estimate \(Spec(\phi_0)\) by \[\widehat{Spec}(\phi_0) = \frac{\#\{S^{\ast}_b \leq \phi_0, X^{\ast}_b \leq \theta_0\}}{\#\{X^{\ast}_b \leq \theta_0\}}\,\] etc.
    4. Find \(\phi_0 = \phi^{\ast}_0\) and \(\phi_2 = \phi^{\ast}_2\) that numerically solve \[\begin{align*} P_0 &= \widehat{Spec}(\phi_0)P^{lat}_0 + \widehat{FN}^1(\phi_0)P^{lat}_1 + \widehat{FN}^2(\phi_0)P^{lat}_2\\ P_2 &= \widehat{Sens}(\phi_2)P^{lat}_2 + \widehat{FP}^1(\phi_2)P^{lat}_1 + \widehat{FP}^0(\phi_2)P^{lat}_0 \end{align*}\] and compute \[ Spec = \widehat{Spec}(\phi^{\ast}_0),\; Sens = \widehat{Sens}(\phi^{\ast}_2),\; \textrm{etc.} \]
  4. Follow Steps 3–6 under Approach 1

Continuous \(\, X^*\) and \(\, S^*(1)\)

  1. Specify \(P^{lat}_{lowestVE}\), \(\rho\), \(\sigma^2_{obs}\), \(VE_{lowest}\), \(risk_0\), \(n_{cases,0}\), \(n_{controls, 0}\), \(n^S_{cases}\), \(K\)
    • \(N_{complete, 0} = n_{cases, 0} + n_{controls, 0}\)
  2. Simulate \(Y\) by creating a vector with \(n_{cases,0}\) 1’s followed by \(n_{controls,0}\) 0’s.
  3. Simulate \(X^*\) under the assumption of homogeneous risk in the placebo group:
    • Cases: from a grid of values ranging from -3 to 3, sample \(n_{cases,0}\) with replacement from: \[\begin{align*} f_{X^{\ast}}(x^{\ast}|Y=1,Y^{\tau}=0,Z=0) &= f_{X^{\ast}}(x^{\ast}|Y(0)=1)\\ &= \frac{P(Y(0)=1|X^*=x^*)f_{X^{\ast}}(x^{\ast})}{P(Y(0)=1)}\\ &= \frac{risk^{lat}_0(x^*)f_{X^{\ast}}(x^{\ast})}{risk_0}\\ &= f_{X^{\ast}}(x^{\ast}) \quad \text{because } risk^{lat}_0(x^*)=risk_0 \end{align*}\]
    • Controls: from a grid of values ranging from -3 to 3, sample \(n_{controls,0}\) with replacement from: \[\begin{align*} f_{X^{\ast}}(x^{\ast}|Y=0,Y^{\tau}=0,Z=0) &= f_{X^{\ast}}(x^{\ast}|Y(0)=0)\\ &= \frac{P(Y(0)=0|X^*=x^*)f_{X^{\ast}}(x^{\ast})}{P(Y(0)=0)}\\ &= \frac{(1-risk^{lat}_0(x^*))f_{X^{\ast}}(x^{\ast})}{1-risk_0}\\ &= f_{X^{\ast}}(x^{\ast}) \quad \text{because } risk^{lat}_0(x^*)=risk_0 \end{align*}\]
    • \(f_{X^{\ast}}(x^{\ast})\) is fully specified because \(X^* \sim N(0, \sigma^2_{tr})\)
  4. Simulate \(S^*(1)\): \(S^*(1)=X^*+\epsilon,\) where \(\epsilon \sim N(0, \sigma^2_e)\) and \(\sigma_e^2=(1-\rho)\sigma^2_{obs}\). \(\epsilon\) is independent of \(X^*\) and is simulated by rnorm(Ncomplete, mean=0, sd=sqrt(sigma2e))

Algorithms for Simulating a Baseline Immunogenicity Predictor (BIP)

Trichotomous \(\, X, S(1),\) and \(\, BIP\) Using Approach 1

  1. The user specifies a classification rule defined by \(P(BIP=i \mid S(1)=j)\), \(i,j=0,1,2\).
  2. For a subject with biomarker measurement \(S_k(1)\), generate \(BIP_k\) by a draw from \(\mathsf{Mult}(1, (q_0, q_1, q_2))\), where \(q_i=P(BIP_k=i \mid S(1)=S_k(1))\), \(i=0,1,2\).

Trichotomous \(\, X, S(1),\) and \(\, BIP\) Using Approach 2

Note: All variables with * are continuous.

  1. The user specifies \(\mathop{\mathrm{corr}}(BIP^*, S^*(1))\).
  2. Assuming that \(BIP^*\) follows an additive measurement error model, i.e., \(BIP^* := S^*(1) + \delta\), where \(\delta \sim N(0, \sigma^2_{\delta})\) with an unknown \(\sigma^2_{\delta}\), and \(\delta, \epsilon\), and \(X^*\) are independent, solve the following equation for \(\mathop{\mathrm{var}}\delta = \sigma^2_{\delta}\): \[ \mathop{\mathrm{corr}}(BIP^*, S^*(1)) = \sqrt\frac{\mathop{\mathrm{var}}X^* + \mathop{\mathrm{var}}\epsilon}{\mathop{\mathrm{var}}X^* + \mathop{\mathrm{var}}\epsilon + \mathop{\mathrm{var}}\delta} \]
  3. For the fixed \(\phi^{\ast}_0\) and \(\phi^{\ast}_2\) derived above, define \[\begin{align*} Spec_{BIP}(\xi_0) &= P(BIP^{\ast} \leq \xi_0 \mid S^{\ast} \leq \phi^{\ast}_0)\\ FN^1_{BIP}(\xi_0) &= P(BIP^{\ast} \leq \xi_0 \mid S^{\ast} \in (\phi^{\ast}_0,\phi^{\ast}_2])\\ FN^2_{BIP}(\xi_0) &= P(BIP^{\ast} \leq \xi_0 \mid S^{\ast} > \phi^{\ast}_2)\\ Sens_{BIP}(\xi_2) &= P(BIP^{\ast} > \xi_2 \mid S^{\ast} > \phi^{\ast}_2)\\ FP^1_{BIP}(\xi_2) &= P(BIP^{\ast} > \xi_2 \mid S^{\ast} \in (\phi^{\ast}_0,\phi^{\ast}_2])\\ FP^0_{BIP}(\xi_2) &= P(BIP^{\ast} > \xi_2 \mid S^{\ast} \leq \phi^{\ast}_0) \end{align*}\]
  4. Using the same technique as in the derivation of \(\phi^{\ast}_0\) and \(\phi^{\ast}_2\) above, find \(\xi_0=\xi^{\ast}_0\) and \(\xi_2=\xi^{\ast}_2\) that numerically solve \[\begin{align*} P_0 &= \widehat{Spec}_{BIP}(\xi_0)P_0 + \widehat{FN}_{BIP}^1(\xi_0)P_1 + \widehat{FN}_{BIP}^2(\xi_0)P_2\\ P_2 &= \widehat{Sens}_{BIP}(\xi_2)P_2 + \widehat{FP}_{BIP}^1(\xi_2)P_1 + \widehat{FP}_{BIP}^0(\xi_2)P_0 \end{align*}\] and compute \[ Spec_{BIP} = \widehat{Spec}_{BIP}(\xi^{\ast}_0),\; Sens_{BIP} = \widehat{Sens}_{BIP}(\xi^{\ast}_2),\; \textrm{etc.} \]
  5. For a subject with biomarker measurement \(S_k(1)\), generate \(BIP_k\) by a draw from \(\mathsf{Mult}(1, (q_0, q_1, q_2))\), where \(q_i\), \(i=0,1,2\), are determined by \(Sens_{BIP}\), \(Spec_{BIP}\), etc. obtained in Step 4.

Continuous \(\, X^*, S^*(1),\) and \(\, BIP^*\)

  1. The user specifies \(\mathop{\mathrm{corr}}(BIP^*, S^*(1))\).
  2. Assuming that \(BIP^*\) follows an additive measurement error model, i.e., \(BIP^* := S^*(1) + \delta\), where \(\delta \sim N(0, \sigma^2_{\delta})\) with an unknown \(\sigma^2_{\delta}\), and \(\delta, \epsilon\), and \(X^*\) are independent, solve the following equation for \(\mathop{\mathrm{var}}\delta = \sigma^2_{\delta}\): \[ \mathop{\mathrm{corr}}(BIP^*, S^*(1)) = \sqrt\frac{\mathop{\mathrm{var}}X^* + \mathop{\mathrm{var}}\epsilon}{\mathop{\mathrm{var}}X^* + \mathop{\mathrm{var}}\epsilon + \mathop{\mathrm{var}}\delta} \]
  3. For a subject with biomarker measurement \(S^*_k(1)\), generate \(BIP^*_k\) as \(BIP^*_k = S^*_k(1) + \delta\) using \(\sigma^2_{\delta} = \mathop{\mathrm{var}}\delta\) obtained in Step 2.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.