The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
max_rules
hyper parameters for max rules
filtering.B
hyper-parameter,subsample
hyper-parameter.rules
(implicit form) in cre() function return.stability_selection
binary -> string
(‘no’,‘vanilla’,‘error_control’).ntrees_gbm
hyper-parameter and
ntrees_gbm
hyper-parameter in ntrees
hyper-parameter.ite_method_dis
, ite_method_inf
method-parameter -> ite_method
.ps_method_dis
, ps_method_inf
method-parameter -> learner_ps
.oreg_method_dis
, oreg_method_inf
method-parameter -> learner_y
.max_nodes
hyper-parameter.replace
hyper-parameter.penalty_rl
hyper-parameter.t_pvalue
hyper-parameter.ite_pred
from cre() function return.intervention_vars
.bcf
) ITE estimator is not
supported.plot()
function (remove ATE, old BATE, and
explicit AATEs).offset
method-parameter -> hyper-parameterestimate_ite_poisson
function ->
estimate_ite_tpoisson
max_dacay
hyper-parameter ->
t_decay
.interpret_select_rules
function ->
interpret_rules
.generate_causal_rules
function ->
discover_rules
.discover_causal_rules
function
->select_rules
.offset_name
method parameter ->
offset
.cre
.cre
object: added parameters and ite estimation.generate_cre_dataset
).slearner
) method for ITE estimation.tlearner
) method for ITE estimation.xlearner
) method for ITE estimation.summary.cre
.verbose
parameter in summary.cre
.ite
, additional cre
input parameter to use
personalized ite estimations.estimation.R
).discovery.R
).extract_effect_modifiers
function (utility for
performance evaluation).evaluate
function for discovery evaluation.confounding
parameter in
generate_cre_dataset
to set confounding type.ite_pred
and model
in CRE results.binary_covariates
parameter in
generate_cre_dataset
to set covariates domain.include_ps_inf
method-parameter.include_ps_dis
method-parameter.oreg
method for ITE estimation.ipw
method for ITE estimation.sipw
method for ITE estimation.type_decay
hyper-parameter.linreg
for CATE estimation (remove
cate_method
and cate_SL_library
parameters).method_params
and hyper_params
additional
parameters in summary.cre
.random_state
parameter.include_offset
method parameter.binary
parameter in generate_cre_dataset
-> binary_outcome
.filter_cate
hyper-parameter ->
t_pvalue
.t_anom
hyper-parameter -> t_ext
.effect_modifier
hyper-parameter ->
intervention_vars
.lasso_rules_filter
function ->
discover_causal_rules
.split_data
function ->
honest_splitting
.prune_rules
function ->
`filter_irrelevant_rules
.discard_correlated_rules
function ->
filter_correlated_rules
.discard_anomalous_rules
function ->
filter_extreme_rules
.penalty_rl
hyper-parameter).q
hyper-parameter -> cutoff
.pfer_val
hyper-parameter -> pfer
.select_causal_rules
function ->
lasso_rules_filter
.t
hyper-parameter -> t_anom
.generate_rules_matrix
function.summary.cre
function to describe results.min_nodes
hyper-parameter -> node_size
(randomForest
convention).cre
returns an S3 object.prune_rules
function to discard un-predictive
rules.discard_anomalous_rules
function to discard anomalous
rules (see t_corr
hyper-parameter.).discard_correlated_rules
function to discard correlated
rules (see t_anom
hyper-parameter).effect_modifiers
parameter in
generate_rules
function for covariates filtering.generate_causal_rules
function.SuperLearner
package for
propensity score estimation in estimate_ite_xyz
.poisson
,
DRLearner
, bart-baggr
, cf-means
,
linreg
) in estimate_cate
function.ps_method_dis
, ps_method_inf
,
or_method_dis
, or_method_inf
,
cate_SL_library
) method-parameters to complement
SuperLearner
package.cate_method
method-parameter to select CATE estimation
method.filter_cate
method-parameter for estimation
filtering.p
parameter (in generate_cre_dataset
function) to set the number of covariates.replace
parameter (in generate_rules
function) to allow bootstrapping.cre.print
generic function to print cre
S3
object results.cre.summary
generic functions to summarize
cre
S3 object Results.check_input
function to isolate input checks.estimate_ite_aipw
function for augmented inverse
propensity weighting.plot.cre
generic function to plot cre
S3
object results.test-cre_functional.R
to test the functionality of the
package.stability_selection
function for causal rules
selection.estimate_ite_blp
function.take1()
function.estimate_cate
include two methods for estimating the
CATE values.cre
added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.estimate_ite_xyz
conduct propensity score estimation
using helper function.generate_cre_dataset
.set_logger
and get_logger
.check_input_data
function.generate_cre_dataset
function to generate synthetic
data for testing the package.test-generate_cre_dataset
function test.estimate_ps
function to estimate the propensity
score.estimate_ite_xbart
function to generate ITE estimates
using accelerated BART.estimate_ite_xbcf
function to generate ITE estimates
using accelerated BCF.analyze_sensitivity
function to conduct sensitivity
analysis for unmeasured confounding.cre
function to perform the entire Causal Rule Ensemble
method.estimate_cate
function to generate CATE estimates from
the ITE estimates and select rules.estimate_ite
function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions).estimate_ite_bart
function to generate ITE estimates
using BART.estimate_ite_bcf
function to generate ITE estimates
using Bayesian Causal Forests.estimate_ite_cf
function to generate ITE estimates
using Causal Forests.estimate_ite_ipw
function to generate ITE estimates
using IPW.estimate_ite_or
function to generate ITE estimates
using Outcome Regression.estimate_ite_sipw
function to generate ITE estimates
using SIPW.extract_rules
function to extract a list of causal
rules from randomForest and GBM models.generate_rules
function to generate causal rule models
using randomForest and GBM methods.generate_rules_matrix
function to convert a list of
causal rules into a matrix.select_causal_rules
function to apply penalized
regression to causal rules. to select only the most important ones.split_data
function to split input data into discovery
and inference subsamples.take1
function to create a subsample of indices.seed
argument in generate_cre_datase
function.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.