The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

CIMTx: Causal Inference for Multiple Treatments with a Binary Outcome

Different methods to conduct causal inference for multiple treatments with a binary outcome, including regression adjustment, vector matching, Bayesian additive regression trees, targeted maximum likelihood and inverse probability of treatment weighting using different generalized propensity score models such as multinomial logistic regression, generalized boosted models and super learner. For more details, see the paper by Hu et al. <doi:10.1177/0962280220921909>.

Version: 1.2.0
Imports: nnet (≥ 7.3-16), BART (≥ 2.9), twang (≥ 2.5), arm (≥ 1.2-12), dplyr (≥ 1.0.7), Matching (≥ 4.9-11), magrittr (≥ 2.0.1), WeightIt (≥ 0.12.0), tmle (≥ 1.5.0.2), tidyr (≥ 1.1.4), stats, ggplot2 (≥ 3.3.5), cowplot (≥ 1.1.1), mgcv (≥ 1.8-38), metR (≥ 0.11.0), stringr (≥ 1.4.0), SuperLearner (≥ 2.0-28), foreach (≥ 1.5.1), doParallel (≥ 1.0.16)
Published: 2022-06-24
DOI: 10.32614/CRAN.package.CIMTx
Author: Liangyuan Hu [aut], Chenyang Gu [aut], Michael Lopez [aut], Jiayi Ji [aut, cre]
Maintainer: Jiayi Ji <jjy2876 at gmail.com>
License: MIT + file LICENSE
NeedsCompilation: no
CRAN checks: CIMTx results

Documentation:

Reference manual: CIMTx.pdf

Downloads:

Package source: CIMTx_1.2.0.tar.gz
Windows binaries: r-devel: CIMTx_1.2.0.zip, r-release: CIMTx_1.2.0.zip, r-oldrel: CIMTx_1.2.0.zip
macOS binaries: r-release (arm64): CIMTx_1.2.0.tgz, r-oldrel (arm64): CIMTx_1.2.0.tgz, r-release (x86_64): CIMTx_1.2.0.tgz, r-oldrel (x86_64): CIMTx_1.2.0.tgz
Old sources: CIMTx archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=CIMTx to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.