The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

CB2

CB2(CRISPRBetaBinomial) is a new algorithm for analyzing CRISPR data based on beta-binomial distribution. We provide CB2 as a R package, and the interal algorithms of CB2 are also implemented in CRISPRCloud.

Update

May 26, 2020

April 14, 2020

December 16, 2019

July 2, 2019

There are several updates.

How to install

Currently CB2 is now on CRAN, and you can install it using install.package function.

install.package("CB2")

Installation Github version of CB2 can be done using the following lines of code in your R terminal.

install.packages("devtools")
devtools::install_github("LiuzLab/CB2")

Alternatively, here is a one-liner command line for the installation.

Rscript -e "install.packages('devtools'); devtools::install_github('LiuzLab/CB2')"

A simple example how to use CB2 in R

FASTA <- system.file("extdata", "toydata",
                     "small_sample.fasta",
                     package = "CB2")
df_design <- data.frame()
for(g in c("Low", "High", "Base")) {
  for(i in 1:2) {
    FASTQ <- system.file("extdata", "toydata",
                         sprintf("%s%d.fastq", g, i), 
                         package = "CB2")
    df_design <- rbind(df_design, 
      data.frame(
        group = g, 
        sample_name = sprintf("%s%d", g, i),
        fastq_path = FASTQ, 
        stringsAsFactors = F)
      )
  }
}

MAP_FILE <- system.file("extdata", "toydata", "sg2gene.csv", package="CB2")
sgrna_count <- run_sgrna_quant(FASTA, df_design, MAP_FILE)
  
sgrna_stat <- measure_sgrna_stats(sgrna_count$count, df_design, 
                                  "Base", "Low", 
                                  ge_id = "gene",
                                  sg_id = "id")
gene_stat <- measure_gene_stats(sgrna_stat)

Or you could run the example with the following commented code.

sgrna_count <- run_sgrna_quant(FASTA, df_design)
sgrna_stat <- measure_sgrna_stats(sgrna_count$count, df_design, "Base", "Low")
gene_stat <- measure_gene_stats(sgrna_stat)

More detailed tutorial is available here!

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.