The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Bandwidth Selectors for Local Linear Quantile Regression
Version: 0.1.0
Date: 2022-01-31
Depends: R (≥ 2.6), quantreg, KernSmooth, nleqslv
Description: Bandwidth selectors for local linear quantile regression, including cross-validation and plug-in methods. The local linear quantile regression estimate is also implemented.
Language: en-GB
License: GPL-2
Encoding: UTF-8
Biarch: true
NeedsCompilation: yes
Packaged: 2022-02-07 16:24:41 UTC; mercedes
Author: Mercedes Conde-Amboage ORCID iD [aut, cre], Cesar Sanchez-Sellero ORCID iD [aut]
Maintainer: Mercedes Conde-Amboage <mercedes.amboage@usc.es>
Repository: CRAN
Date/Publication: 2022-02-08 16:00:11 UTC

Bandwidth selectors for local linear quantile regression

Description

The R package BwQuant implements different bandwidth selectors for local linear quantile regression, including selectors based on rule of thumb, plug-in and cross-validation tecniques.

Author(s)

Mercedes Conde-Amboage <mercedes.amboage@usc.es> and Cesar Sanchez-Sellero <cesar.sanchez@usc.es>

Maintainer: Mercedes Conde-Amboage <mercedes.amboage@usc.es>


Computing the cross-validation bandwidth proposed by Abberger (1998)

Description

Function to compute a bandwidth for local linear quantile regression following the cross-validation criteria presented by Abberger (1998).

Usage

bwCV(x, y, hseq, tau)

Arguments

x

numeric vector of x data.

y

numeric vector of y data. This must be the same length as x.

hseq

sequence of values where the cross-validation function will be evaluated.

tau

the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1.

Details

The cross-validation function is evaluated at each element of hseq. Then, the cross-validation selector will be the element of hseq that minimizes the cross-validation function.

Value

Returns a number with the chosen bandwidth.

Author(s)

Mercedes Conde-Amboage and Cesar Sanchez-Sellero.

References

Abberger, K. (1998). Cross-validation in nonparametric quantile regression. Allgemeines Statistisches Archiv, 82, 149-161.

Abberger, K. (2002). Variable data driven bandwidth choice in nonparametric quantile regression. Technical Report.

See Also

The obtained bandwidth can be used in the function llqr to produce a local linear estimate of the tau-quantile regression function.

Examples

set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
hseq=seq(0.05,0.8,length=21)
tau=0.25
bwCV(x,y,hseq,tau)

Computing the plug-in bandwidth proposed by Conde-Amboage and Sanchez-Sellero (2018)

Description

Function to compute a bandwidth selector for local linear quantile regression following the plug-in rule proposed in Section 2.2 of Conde-Amboage and Sanchez-Sellero (2018).

Usage

bwPI(x, y, tau)

Arguments

x

numeric vector of x data.

y

numeric vector of y data. This must be the same length as x.

tau

the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1.

Value

Returns a bandwidth for a local linear estimate of the tau-quantile regression function.

Author(s)

Mercedes Conde-Amboage and Cesar Sanchez-Sellero.

References

Conde-Amboage, M. and Sanchez-Sellero, C. (2018). A plug-in bandwidth selector for nonparametric quantile regression. TEST, 28, 423-450. <doi:10.1007/s11749-018-0582-6>.

See Also

The obtained bandwidth can be used in the function llqr to produce a local linear estimate of the tau-quantile regression function.

Examples

set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
tau=0.25
bwPI(x,y,tau)

Computing a bandwidth using a rule of thumb

Description

Function to compute a bandwidth selector for local linear quantile regression following the rule of thumb presented in Section 2.1 of Conde-Amboage and Sanchez-Sellero (2018).

Usage

bwRT(x, y, tau)

Arguments

x

numeric vector of x data.

y

numeric vector of y data. This must be the same length as x.

tau

the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1.

Value

Returns a bandwidth for a local linear estimate of the tau-quantile regression function.

Author(s)

Mercedes Conde-Amboage and Cesar Sanchez-Sellero.

References

Conde-Amboage, M. and Sanchez-Sellero, C. (2018). A plug-in bandwidth selector for nonparametric quantile regression. TEST, 28, 423-450. <doi:10.1007/s11749-018-0582-6>.

See Also

The obtained bandwidth can be used in the function llqr to produce a local linear estimate of the tau-quantile regression function.

Examples

set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
tau=0.25
bwRT(x,y,tau)

Computing the plug-in bandwidth proposed by Yu and Jones (1998)

Description

Function to compute a bandwidth selector for local linear quantile regression following the plug-in rule proposed by Yu and Jones (1998).

Usage

bwYJ(x, y, tau)

Arguments

x

numeric vector of x data.

y

numeric vector of y data. This must be the same length as x.

tau

the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1.

Value

Returns a bandwidth for a local linear estimate of the tau-quantile regression function.

Author(s)

Mercedes Conde-Amboage and Cesar Sanchez-Sellero.

References

Ruppert, D., Sheather, S. J. and Wand, M. P. (1995). An efective bandwidth selector for local least squares regression. Journal of the American Statistical Association. 90, 1257-1270.

Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237.

See Also

The obtained bandwidth can be used in the function llqr to produce a local linear estimate of the tau-quantile regression function.

Examples

set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
tau=0.25
bwYJ(x,y,tau)

Fitting a local linear quantile regression model

Description

Function that estimates the quantile regression function using a local linear kernel smoother.

Usage

llqr(x, y, tau, t, h)

Arguments

x

numeric vector of x data.

y

numeric vector of y data. This must be the same length as x.

tau

the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1.

t

the values of x at which the quantile regression model is to be estimated.

h

the bandwidth parameter.

Value

A list with the following components:

x.values

the given points at which the evaluation occurs.

y.values

the estimated values of the quantile regression function at the given x.values.

Author(s)

Mercedes Conde-Amboage and Cesar Sanchez-Sellero.

References

Fan, J., Hu, T. C. and Truong, Y. K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433-446.

Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237.

See Also

The argument h with the bandwidth parameter can be fixed to some arbitrary value or chosen by one of the procedures implemented in the functions bwCV, bwPI, bwRT or bwYJ.

Examples

set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
tau=0.25
h=bwPI(x,y,tau)
t=seq(0,1,length=101)
m=llqr(x,y,tau,t,h)
plot(x,y)
lines(m$x.values,m$y.values)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.