The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of BioVizSeq is to visualize the types and distribution of elements within bio-sequences. At the same time, We have developed a geom layer, geom_rrect(), that can generate rounded rectangles. No external references are used in the development of this package.
Install from CRAN:
# Install from CRAN
install.packages("BioVizSeq")
Install from Github: the development version of BioVizSeq:
install.packages("devtools")
::install_github("zhaosq2022/BioVizSeq") devtools
library(BioVizSeq)
#> Registered S3 methods overwritten by 'treeio':
#> method from
#> MRCA.phylo tidytree
#> MRCA.treedata tidytree
#> Nnode.treedata tidytree
#> Ntip.treedata tidytree
#> ancestor.phylo tidytree
#> ancestor.treedata tidytree
#> child.phylo tidytree
#> child.treedata tidytree
#> full_join.phylo tidytree
#> full_join.treedata tidytree
#> groupClade.phylo tidytree
#> groupClade.treedata tidytree
#> groupOTU.phylo tidytree
#> groupOTU.treedata tidytree
#> inner_join.phylo tidytree
#> inner_join.treedata tidytree
#> is.rooted.treedata tidytree
#> nodeid.phylo tidytree
#> nodeid.treedata tidytree
#> nodelab.phylo tidytree
#> nodelab.treedata tidytree
#> offspring.phylo tidytree
#> offspring.treedata tidytree
#> parent.phylo tidytree
#> parent.treedata tidytree
#> root.treedata tidytree
#> rootnode.phylo tidytree
#> sibling.phylo tidytree
#> Package BioVizSeq loaded successfully!
# Extra package
library(ggplot2)
#> Warning: 程辑包'ggplot2'是用R版本4.3.3 来建造的
gff or gtf file
<- system.file("extdata", "idpro.gff3", package = "BioVizSeq")
gff_path <- read.table(gff_path, header = FALSE, sep = '\t')
gff_data <- gff_to_loc(gff_data)
gff_loc
motif_plot(gff_loc$table_loc, gff_loc$gene_length) +
labs(x="DNA length (5'-3')", y="Gene name")
<- system.file("extdata", "idpro.gff3", package = "BioVizSeq")
gff_path gff_plot(gff_path)
meme.xml or mast.xml
<- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_path <- readLines(meme_path)
meme_file <- meme_to_loc(meme_file)
motif_loc
motif_plot(motif_loc$table_loc, motif_loc$gene_length)
<- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_path meme_plot(meme_path)
Download: .tsv
<- system.file("extdata", "iprscan.tsv", package = "BioVizSeq")
pfam_path <- read.table(pfam_path, sep='\t', header = FALSE)
pfam_file <- pfam_to_loc(pfam_file)
domain_loc
motif_plot(domain_loc$table_loc, domain_loc$gene_length)
<- system.file("extdata", "iprscan.tsv", package = "BioVizSeq")
pfam_path pfam_plot(pfam_path)
Download “Superfamily Only”
Type: .txt
<- system.file("extdata", "hitdata.txt", package = "BioVizSeq")
hitdata_path <- readLines(hitdata_path)
cdd_file <- cdd_to_loc(cdd_file)
domain_loc
<- system.file("extdata", "idpep.fa", package = "BioVizSeq")
fa_path <- fastaleng(fa_path)
gene_length motif_plot(domain_loc, gene_length)
<- system.file("extdata", "hitdata.txt", package = "BioVizSeq")
hitdata_path <- system.file("extdata", "idpep.fa", package = "BioVizSeq")
fa_path
cdd_plot(hitdata_path, fa_path)
protein file (.fa or .fasta)
<- system.file("extdata", "target.fa", package = "BioVizSeq")
fa_path <- smart_to_loc(fa_path)
domain_loc #> Submitting sequence AtAP2_002...
#> Submitting sequence AtAP2_003...
#> Job entered the queue with ID12315310532207961734854988nxRvSILzcN. Waiting for results.
#> Submitting sequence AtAP2_004...
#> Submitting sequence AtAP2_005...
motif_plot(domain_loc$table_loc, domain_loc$gene_length)
<- system.file("extdata", "target.fa", package = "BioVizSeq")
fa_path
smart_plot(fa_path)
#> Submitting sequence AtAP2_002...
#> Submitting sequence AtAP2_003...
#> Job entered the queue with ID12315310532216911734855018RDVNZgsHWd. Waiting for results.
#> Submitting sequence AtAP2_004...
#> Submitting sequence AtAP2_005...
promoter sequence(.fa or .fasta)
# 1. upload fasta file to plantcare, get the result file(.tab)
# upload_fa_to_plantcare(fasta_file, email)
# 2. Classify the functions of cis element
<- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_path <- read.table(plantcare_path, header = FALSE, sep = '\t', quote="")
plantcare_file <- plantcare_classify(plantcare_file)
plantcare_data <- plantcare_to_loc(plantcare_data)
plantcare_loc
<- data.frame(ID = unique(plantcare_loc$ID), length=2000)
promoter_length
motif_plot(plantcare_loc, promoter_length) +
labs(x="Promoter Length", y="Gene")
<- system.file("extdata", "plantCARE_output.tab", package = "BioVizSeq")
plantcare_path plantcare_plot(plantcare_path, promoter_length = 2000)
p_tree, p_gff, p_pfam, p_meme, p_smart, p_cdd, p_plantcare
library(patchwork)
<- system.file("extdata", "idpep.nwk", package = "BioVizSeq")
tree_path <- system.file("extdata", "idpro.gff3", package = "BioVizSeq")
gff_path <- system.file("extdata", "meme.xml", package = "BioVizSeq")
meme_path <- system.file("extdata", "iprscan.tsv", package = "BioVizSeq")
pfam_path <- combi_p(tree_path = tree_path, gff_path = gff_path,
plot_file meme_path = meme_path, pfam_path = pfam_path)
$p_tree + plot_file$p_gff + plot_file$p_pfam +
plot_file$p_meme +plot_layout(ncol = 4) +
plot_fileplot_annotation(
tag_levels = 'A'
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.