The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
max_extend
option to autofit_control
argument in JAGS_fit()
to limit the number of iterations
for the model extensionJAGS_diagnostics_density()
plots for mixture
distributionsplot_posterior()
for simple
as_mixed_posteriors
objectsJAGS_evaluate_formula()
for mixture and spike and slab
priors.fit_to_posterior()
prior_mixture()
function for creating a mixture
of prior distributionsas_mixed_posteriors()
and
as_marginal_inference()
functions for a single JAGS models
(with spike and slab or mixture priors) to enabling tables and figures
based on the corresponding outputinterpret2()
function for another way of
creating textual summaries without the need of inference and samples
objectsrunjags_estimates_table()
functionprior_informed()
functionbridge_object()
(fixes:
https://github.com/FBartos/BayesTools/issues/28)Na/NaN
tests for check_
functions
(fixes: https://github.com/FBartos/BayesTools/issues/26)JAGS_extend()
functionautofit_control
argument in
JAGS_fit()
: "restarts"
allows to restart model
initialization up to restarts
times in case of failuremodel_summary_table()
in case of
prior_none()
contrast = "meandif"
to the
prior_factor
function which generates identical prior
distributions for difference between the grand mean and each factor
levelcontrast = "independent"
to the
prior_factor
function which generates independent identical
prior distributions for each factor levelremove_column
function for removing columns from
BayesTools_table
objects without breaking the attributes
etc…remove_parameters
argument to
model_summary_table()
point
prior distribution as option to
prior_factor
with "meandif"
and
"orthonormal"
contrastsmarginal_posterior()
function which creates
marginal prior and posterior distributions (according to a model formula
specification)Savage_Dickey_BF()
function to compute density
ratio Bayes factors based on marginal_posterior
objectsmarginal_inference()
function to combine
information from marginal_posterior()
and
Savage_Dickey_BF()
marginal_estimates_table()
function to summarize
marginal_inference()
objectsplot_marginal()
function to visualize
marginal_inference()
objectscontrast = "meandif"
is now the default setting for
prior_factor
functiontransform_orthonormal
argument in favor of
more general transform_factors
argumentdummy
contrast/factor attributes to
treatment
for consistency
(https://github.com/FBartos/BayesTools/issues/23)check_bool()
,
check_char()
, check_real()
,
check_int()
, and check_list()
do not throw
error if allow_NULL = TRUE
student-t
allowed as a prior distribution
name
JAGS_evaluate_formula
runjags_estimates_table()
function can now handle
factor transformationsplot_posterior
function can now handle factor
transformationsrunjags_estimates_table()
function via the
remove_parameters
argumentrunjags_estimates_table()
function can now remove
factor spike prior distributionsstan_estimates_summary()
functionJAGS_marglik_parameters_formula
functionrunjags_estimates_table
functionensemble_summary_table
and
ensemble_diagnostics_table
function can create table
without model componentsJAGS_evaluate_formula
for evaluating formulas based on
data and posterior samples (for creating predictions etc)JAGS_parameter_names
for transforming formula names
into the JAGS syntaxplot_models
implementation for factor predictorsformat_parameter_names
for cleaning parameter names
from JAGSmean
, sd
, and var
functions
now return the corresponding values for differences from the mean for
the orthonormal prior distributionsrunjags_summary_table
function
(previous version crashed under other than default fit_JAGS
settings)runjags_summary_table
functionplot_models
functionadd_column
function for extending
BayesTools_table
objects without breaking the attributes
etc…BayesTools_table
functions with with
formula_prefix
argumentmultiply_by
attribute passed with the
prior)plot_posterior
(posterior is now plotted over the
prior)inclusion_BF
to deal with
over/underflow (Issue #9)ensemble_inference_table()
(Issue #11)ensemble_summary_table
(Issue #7)prior_informed
function for creating informed prior
distributions based on the past psychological and medical researchprior.plot
can’t plot “spike” with
plot_type == "ggplot"
(Issue #6)MCMC error/SD
print names in BayesTools tables (Issue
#8)JAGS_bridgesampling_posterior
unable to add a parameter
via add_parameters
interpret
function for creating textual summaries based
on inference and samples objectsplot_posterior
fails with only mu & PET samples
(Issue #5)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.