The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In a simple model, where there is no auxiliary variable, and a Simple Random Sample was taken from the population, we can calculate the Bayes Linear Estimator for the individuals of the population with the BLE_SRS() function, which receives the following parameters:
Letting \(v \to \infty\) and keeping \(\sigma^2\) fixed, that is, assuming prior ignorance, the resulting estimator will be the same as the one seen in the design-based context for the simple random sampling case.
This can be achieved using the BLE_SRS() function by omitting either the prior mean and/or the prior variance, that is:
data(BigCity)
set.seed(1)
Expend <- sample(BigCity$Expenditure,10000)
mean(Expend) #Real mean expenditure value, goal of the estimation
#> [1] 375.586
ys <- sample(Expend, size = 20, replace = FALSE)
Our design-based estimator for the mean will be the sample mean:
Applying the prior information about the population we can get a better estimate, especially in cases when only a small sample is available:
Estimator <- BLE_SRS(ys, N = 10000, m=300, v=10.1^5, sigma = sqrt(10^5))
Estimator$est.beta
#> Beta
#> 1 390.8338
Estimator$Vest.beta
#> V1
#> 1 2524.999
Estimator$est.mean[1,]
#> [1] 390.8338
Estimator$Vest.mean[1:5,1:5]
#> V1 V2 V3 V4 V5
#> 1 102524.999 2524.999 2524.999 2524.999 2524.999
#> 2 2524.999 102524.999 2524.999 2524.999 2524.999
#> 3 2524.999 2524.999 102524.999 2524.999 2524.999
#> 4 2524.999 2524.999 2524.999 102524.999 2524.999
#> 5 2524.999 2524.999 2524.999 2524.999 102524.999
ys <- c(5,6,8)
N <- 5
m <- 6
v <- 5
sigma <- 1
Estimator <- BLE_SRS(ys, N, m, v, sigma)
Estimator
#> $est.beta
#> Beta
#> 1 6.307692
#>
#> $Vest.beta
#> V1
#> 1 0.3076923
#>
#> $est.mean
#> y_nots
#> 1 6.307692
#> 2 6.307692
#>
#> $Vest.mean
#> V1 V2
#> 1 1.3076923 0.3076923
#> 2 0.3076923 1.3076923
#>
#> $est.tot
#> [1] 31.61538
#>
#> $Vest.tot
#> [1] 3.230769
ys <- mean(c(5,6,8))
n <- 3
N <- 5
m <- 6
v <- 5
sigma <- 1
Estimator <- BLE_SRS(ys, N, m, v, sigma, n)
#> sample mean informed instead of sample observations, parameters 'n' and 'sigma' will be necessary
Estimator
#> $est.beta
#> Beta
#> 1 6.307692
#>
#> $Vest.beta
#> V1
#> 1 0.3076923
#>
#> $est.mean
#> y_nots
#> 1 6.307692
#> 2 6.307692
#>
#> $Vest.mean
#> V1 V2
#> 1 1.3076923 0.3076923
#> 2 0.3076923 1.3076923
#>
#> $est.tot
#> [1] 31.61538
#>
#> $Vest.tot
#> [1] 3.230769
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.