The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
In a situation where the population can be divided into different and exclusive categories, we can calculate the Bayes Linear Estimator for the proportion of individuals in each category with the BLE_Categorical() function, which receives the following parameters:
Letting \(\rho_{ii} \to 1\), that is, assuming prior ignorance, the resulting point estimate will be the same as the one seen in the design-based context for categorical data.
This can be achieved using the BLE_Categorical() function by omitting either the prior proportions and/or the parameter rho, that is:
If the calculation of matrices R and Vs results in non-positive definite matrices, a warning will be displayed. In general this does not produce incorrect/ inconsistent results for the proportion estimate but for its associated variance. It is suggested to review the prior correlation coefficients (parameter rho).
ys <- c(0.2614, 0.7386)
n <- 153
N <- 15288
m <- c(0.7, 0.3)
rho <- matrix(0.1, 1)
Estimator <- BLE_Categorical(ys,n,N,m,rho)
Estimator$est.prop
#> [1] 0.2855228 0.7144772
Estimator$Vest.prop
#> [,1] [,2]
#> [1,] 0.001155671 -0.001155671
#> [2,] -0.001155671 0.001155671
Bellow we can see that the greater the correlation coefficient, the closer our estimation will get to the sample proportions.
ys <- c(0.2614, 0.7386)
n <- 153
N <- 15288
m <- c(0.7, 0.3)
rho <- matrix(0.5, 1)
Estimator <- BLE_Categorical(ys,n,N,m,rho)
Estimator$est.prop
#> [1] 0.2642195 0.7357805
Estimator$Vest.prop
#> [,1] [,2]
#> [1,] 0.0006750388 -0.0006750388
#> [2,] -0.0006750388 0.0006750388
ys <- c(0.2, 0.5, 0.3)
n <- 100
N <- 10000
m <- c(0.4, 0.1, 0.5)
mat <- c(0.4, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.6)
rho <- matrix(mat, 3, 3)
Estimator <- BLE_Categorical(ys,n,N,m,rho)
Estimator$est.prop
#> [1] 0.2221967 0.4785131 0.2992902
Estimator$Vest.prop
#> [,1] [,2] [,3]
#> [1,] 0.0013711226 -0.0004980297 -0.0008730929
#> [2,] -0.0004980297 0.0006722052 -0.0001741755
#> [3,] -0.0008730929 -0.0001741755 0.0010472684
Same example, but with no prior correlation coefficients informed (non-informative prior)
ys <- c(0.2, 0.5, 0.3)
n <- 100
N <- 10000
m <- c(0.4, 0.1, 0.5)
Estimator <- BLE_Categorical(ys,n,N,m,rho=NULL)
#> parameter 'rho' not informed, non informative prior correlation coefficients used in estimations
#> Warning in BLE_Categorical(ys, n, N, m, rho = NULL): 'Vest.prop' should have
#> only positive diagonal values. Review prior specification and verify calculated
#> matrices 'R' and 'Vs'.
Estimator$est.prop
#> [1] 0.2017585 0.4996729 0.2985685
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.