The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
BayesERtools
provides a suite of tools that facilitate
exposure-response analysis using Bayesian methods.
BayesERbook
): https://genentech.github.io/BayesERbook/You can install the BayesERtools
with:
install.packages('BayesERtools')
# devtools::install_github("genentech/BayesERtools") # development version
Binary endpoint
|
Continuous endpoint
|
|||
---|---|---|---|---|
Linear (logit) | Emax (logit) | Linear | Emax | |
backend |
rstanarm
|
rstanemax
|
rstanarm
|
rstanemax
|
reference | 🔗 | 🔗 | 🔗 | 🔗 |
develop model | ✅ | ✅ | ✅ | ✅ |
simulate & plot ER | ✅ | ✅ | ✅ | ✅ |
exposure metrics selection | ✅ | ✅ | ✅ | ✅ |
covariate selection | ✅ | ❌ | ✅ | ❌ |
covariate forest plot | ✅ | ❌ | 🟡 | ❌ |
✅ Available, 🟡 In plan/under development, ❌ Not in a current plan |
Here is a quick demo on how to use this package for E-R analysis. See
vignette("basic_workflow_bin")
for more thorough walk
through of a basic workflow.
# Load package and data
library(dplyr)
library(BayesERtools)
::theme_set(ggplot2::theme_bw(base_size = 12))
ggplot2
data(d_sim_binom_cov)
# Hyperglycemia Grade 2+ (hgly2) data
<-
df_er_ae_hgly2 |>
d_sim_binom_cov filter(AETYPE == "hgly2") |>
# Re-scale AUCss, baseline age
mutate(
AUCss_1000 = AUCss / 1000, BAGE_10 = BAGE / 10,
Dose = paste(Dose_mg, "mg")
)
<- "AEFLAG" var_resp
set.seed(1234)
<- dev_ermod_bin(
ermod_bin data = df_er_ae_hgly2,
var_resp = var_resp,
var_exposure = "AUCss_1000"
)
ermod_bin#>
#> ── Binary ER model ─────────────────────────────────────────────────────────────
#> ℹ Use `plot_er()` to visualize ER curve
#>
#> ── Developed model ──
#>
#> stan_glm
#> family: binomial [logit]
#> formula: AEFLAG ~ AUCss_1000
#> observations: 500
#> predictors: 2
#> ------
#> Median MAD_SD
#> (Intercept) -2.04 0.23
#> AUCss_1000 0.41 0.08
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg
# Using `*` instead of `+` so that scale can be
# applied for both panels (main plot and boxplot)
plot_er_gof(ermod_bin, var_group = "Dose", show_coef_exp = TRUE) *
::xgx_scale_x_log10() xgxr
BGLUC (baseline glucose) is selected while other two covariates are not.
set.seed(1234)
<-
ermod_bin_cov_sel dev_ermod_bin_cov_sel(
data = df_er_ae_hgly2,
var_resp = var_resp,
var_exposure = "AUCss_1000",
var_cov_candidate = c("BAGE_10", "RACE", "BGLUC")
)#>
#> ── Step 1: Full reference model fit ──
#>
#> ── Step 2: Variable selection ──
#>
#> ℹ The variables selected were: AUCss_1000, BGLUC
#>
#> ── Step 3: Final model fit ──
#>
#> ── Cov mod dev complete ──
#>
ermod_bin_cov_sel#> ── Binary ER model & covariate selection ───────────────────────────────────────
#> ℹ Use `plot_submod_performance()` to see variable selection performance
#> ℹ Use `plot_er()` with `marginal = TRUE` to visualize marginal ER curve
#>
#> ── Selected model ──
#>
#> stan_glm
#> family: binomial [logit]
#> formula: AEFLAG ~ AUCss_1000 + BGLUC
#> observations: 500
#> predictors: 3
#> ------
#> Median MAD_SD
#> (Intercept) -7.59 0.90
#> AUCss_1000 0.46 0.08
#> BGLUC 0.87 0.13
#> ------
#> * For help interpreting the printed output see ?print.stanreg
#> * For info on the priors used see ?prior_summary.stanreg
plot_submod_performance(ermod_bin_cov_sel)
<- sim_coveff(ermod_bin_cov_sel)
coveffsim plot_coveff(coveffsim)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.