The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(BSPBSS)
This is a basic example which shows you how to solve a common problem.
First we load the package and generate simulated images with a probabilistic ICA model:
library(BSPBSS)
set.seed(612)
= sim_2Dimage(length = 30, sigma = 5e-4, n = 30, smooth = 6) sim
The true source signals are three 2D geometric patterns (set
smooth=0
to generate patterns with sharp edges).
levelplot2D(sim$S,lim = c(-0.04,0.04), sim$coords)
which generate observed images such as
levelplot2D(sim$X[1:3,], lim = c(-0.12,0.12), sim$coords)
Then we generate initial values for mcmc,
= init_bspbss(sim$X, sim$coords, q = 3, ker_par = c(0.1,50), num_eigen = 50) ini
and run!
= mcmc_bspbss(ini$X,ini$init,ini$prior,ini$kernel,n.iter=2000,n.burn_in=1000,thin=10,show_step=100)
res #> iter 100 Fri Nov 25 10:01:05 2022
#>
#> zeta0.154297 stepsize_zeta 0.00712258 accp_rate_zeta 0.45
#> iter 200 Fri Nov 25 10:01:05 2022
#>
#> zeta0.182201 stepsize_zeta 0.00783484 accp_rate_zeta 0.35
#> iter 300 Fri Nov 25 10:01:05 2022
#>
#> zeta0.205042 stepsize_zeta 0.00861832 accp_rate_zeta 0.45
#> iter 400 Fri Nov 25 10:01:06 2022
#>
#> zeta0.189928 stepsize_zeta 0.00948015 accp_rate_zeta 0.42
#> iter 500 Fri Nov 25 10:01:06 2022
#>
#> zeta0.199043 stepsize_zeta 0.0104282 accp_rate_zeta 0.39
#> iter 600 Fri Nov 25 10:01:06 2022
#>
#> zeta0.197815 stepsize_zeta 0.011471 accp_rate_zeta 0.39
#> iter 700 Fri Nov 25 10:01:06 2022
#>
#> zeta0.22763 stepsize_zeta 0.0126181 accp_rate_zeta 0.34
#> iter 800 Fri Nov 25 10:01:07 2022
#>
#> zeta0.166707 stepsize_zeta 0.0138799 accp_rate_zeta 0.31
#> iter 900 Fri Nov 25 10:01:07 2022
#>
#> zeta0.188473 stepsize_zeta 0.0152679 accp_rate_zeta 0.22
#> iter 1000 Fri Nov 25 10:01:07 2022
#>
#> zeta0.208003 stepsize_zeta 0.0152679 accp_rate_zeta 0.27
#> iter 1100 Fri Nov 25 10:01:07 2022
#>
#> zeta0.176799 stepsize_zeta 0.0152679 accp_rate_zeta 0.24
#> iter 1200 Fri Nov 25 10:01:08 2022
#>
#> zeta0.180526 stepsize_zeta 0.0152679 accp_rate_zeta 0.28
#> iter 1300 Fri Nov 25 10:01:08 2022
#>
#> zeta0.158511 stepsize_zeta 0.0152679 accp_rate_zeta 0.31
#> iter 1400 Fri Nov 25 10:01:08 2022
#>
#> zeta0.127507 stepsize_zeta 0.0152679 accp_rate_zeta 0.28
#> iter 1500 Fri Nov 25 10:01:08 2022
#>
#> zeta0.18967 stepsize_zeta 0.0152679 accp_rate_zeta 0.23
#> iter 1600 Fri Nov 25 10:01:09 2022
#>
#> zeta0.198324 stepsize_zeta 0.0152679 accp_rate_zeta 0.3
#> iter 1700 Fri Nov 25 10:01:09 2022
#>
#> zeta0.183634 stepsize_zeta 0.0152679 accp_rate_zeta 0.3
#> iter 1800 Fri Nov 25 10:01:09 2022
#>
#> zeta0.140081 stepsize_zeta 0.0152679 accp_rate_zeta 0.26
#> iter 1900 Fri Nov 25 10:01:09 2022
#>
#> zeta0.244967 stepsize_zeta 0.0152679 accp_rate_zeta 0.29
#> iter 2000 Fri Nov 25 10:01:10 2022
#>
#> zeta0.226313 stepsize_zeta 0.0152679 accp_rate_zeta 0.27
Then the results can be summarized by
= sum_mcmc_bspbss(res, ini$X, ini$kernel, start = 101, end = 200, select_p = 0.5) res_sum
and shown by
levelplot2D(res_sum$S, lim = c(-1.3,1.3), sim$coords)
For comparison, we show the estimated sources provided by informax ICA here.
levelplot2D(ini$init$ICA_S, lim = c(-1.7,1.7), sim$coords)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.