The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This document contains all the needed R code to reproduce the results described in the paper A Basketball Big Data Platform for Box Score and Play-by-Play Data (https://doi.org/10.1089/big.2023.0177).
# Firstly, load BAwiR and other packages that will be used in the paper:
library(BAwiR)
library(tidyverse) The following data file is an illustration of the type of play-by-play data available from the Spanish ACB league.
Do some first data processing:
acb_games_2223_sl <- acb_vbc_cz_sl_2223 %>%
filter(period == "1C")
df1 <- do_prepare_data(df0, day_num,
acb_games_2223_sl, acb_games_2223_info,
game_code)# Lineups and sub-lineups:
data_li <- do_lineup(df1, day_num, game_code, "Valencia Basket", FALSE)
data_subli <- do_sub_lineup(data_li, 4)# Timeouts:
df1_to <- do_prepare_data_to(df0, TRUE, acb_games_2223_info, acb_games_2223_coach)
data_to <- do_time_out_success(df1_to, day_num, game_code,
"Casademont Zaragoza_Porfirio Fisac", FALSE)# Periods:
team_sel <- "Valencia Basket" # "Casademont Zaragoza"
period_sel <- "1C" # "4C"
player_sel <- "Webb" # "Mara"
pre_per <- do_preproc_period(acb_vbc_cz_pbp_2223, team_sel, period_sel, acb_vbc_cz_sl_2223)
df2 <- pre_per$df2
df0_inli_team <- pre_per$df0_inli_team
df3 <- do_prepare_data(df2, day_num, df0_inli_team, acb_games_2223_info, game_code)
data_per <- do_stats_per_period(df3, day_num, game_code, team_sel, period_sel, player_sel)
# Clutch time:
data_clutch <- do_clutch_time(df0)
# If no rows, that means that the game did not have clutch time.# Free throw fouls:
data_ft_comm <- do_ft_fouls(df0, "comm")
data_ft_rec <- do_ft_fouls(df0, "rec")
# Offensive fouls:
data_off_comm <- do_offensive_fouls(df0, "comm")
data_off_rec <- do_offensive_fouls(df0, "rec")# Offensive rebounds:
df1_or <- do_prepare_data_or(df0, TRUE, acb_games_2223_info)
data_or <- do_reb_off_success(df1_or, day_num, game_code, "Valencia Basket", FALSE)## R version 4.3.3 (2024-02-29)
## Platform: x86_64-redhat-linux-gnu (64-bit)
## Running under: Fedora Linux 39 (Workstation Edition)
##
## Matrix products: default
## BLAS/LAPACK: FlexiBLAS OPENBLAS-OPENMP; LAPACK version 3.11.0
##
## locale:
## [1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=es_ES.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=es_ES.UTF-8
## [7] LC_PAPER=es_ES.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Europe/Madrid
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.37 R6_2.6.1 fastmap_1.2.0 xfun_0.52
## [5] cachem_1.1.0 knitr_1.50 htmltools_0.5.8.1 rmarkdown_2.29
## [9] lifecycle_1.0.4 cli_3.6.5 sass_0.4.10 jquerylib_0.1.4
## [13] compiler_4.3.3 tools_4.3.3 evaluate_1.0.3 bslib_0.9.0
## [17] yaml_2.3.10 rlang_1.1.6 jsonlite_2.0.0
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.