The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

BAQM

R-CMD-check

BAQM supplies functions developed by Babson College instructors for AQM 1000 and AQM 2000 courses using R in the curriculum. The primary functions provide:

Installation

You can install the development version of BAQM from GitHub with:

install.packages("pak")
pak::pak("CPA-wrk/BAQM")

Example

These examples use the built-in R data sets iris, swiss, and mtcars, and show:

(Variable names are truncated in swiss to narrow the output.)

library(leaps)
library(BAQM)
#
sumry(iris) # Includes non-numeric variable
#>          Sepal.Length  Sepal.Width  Petal.Length  Petal.Width     Species
#> n.val             150          150           150          150         150
#> n.na                0            0             0            0           0
#> min               4.3            2             1          0.1  n.lvl  : 3
#> Q1                5.1          2.7           1.6          0.2  setosa :50
#> median            5.8            3          4.35          1.3  versclr:50
#> mean            5.843        3.057         3.758        1.199  virginc:50
#> Q3               6.45          3.4           5.1          1.8            
#> max               7.9          4.4           6.9          2.5            
#> std.dev        0.8281       0.4359         1.765       0.7622
#
names(swiss) # Show original variable names
#> [1] "Fertility"        "Agriculture"      "Examination"      "Education"       
#> [5] "Catholic"         "Infant.Mortality"
names(swiss) <- substr(names(swiss), 1, 4) # Narrows output
sumry(swiss)
#>           Fert   Agri   Exam   Educ   Cath   Infa
#> n.val       47     47     47     47     47     47
#> n.na         0      0      0      0      0      0
#> min         35    1.2      3      1   2.15   10.8
#> Q1        64.4   35.3     12      6   5.16     18
#> median    70.4   54.1     16      8  15.14     20
#> mean     70.14  50.66  16.49  10.98  41.14  19.94
#> Q3        79.3   67.8     22   12.5   93.4   22.2
#> max       92.5   89.7     37     53    100   26.6
#> std.dev  12.49  22.71  7.978  9.615   41.7  2.913
regs <- regsubsets(Fert ~ ., data = swiss, nbest = 3)
sumry(regs)
#>                                                                                                                                                     
#> Call: (function (...)                                                                                                                               
#>       rmarkdown::render(...))(input = base::quote("/Users/peter/Library/CloudStorage/OneDrive-centerpointanalytics.com/CPA_wrk/R/BAQM/README.Rmd"), 
#>           output_options = base::quote(list(html_preview = FALSE)),                                                                                 
#>           quiet = base::quote(TRUE))                                                                                                                
#>    _k_i.best    rsq  adjr2       see    cp Agri Exam Educ Cath Infa
#> 1   1  ( 1 ) 0.4406 0.4282  9.446029 35.20              *          
#> 2   1  ( 2 ) 0.4172 0.4042  9.642000 38.48         *               
#> 3   1  ( 3 ) 0.2150 0.1976 11.189945 66.75                   *     
#> 4   2  ( 1 ) 0.5745 0.5552  8.331442 18.49              *    *     
#> 5   2  ( 2 ) 0.5648 0.5450  8.426136 19.85              *         *
#> 6   2  ( 3 ) 0.5363 0.5152  8.697447 23.83         *              *
#> 7   3  ( 1 ) 0.6625 0.6390  7.505417  8.18              *    *    *
#> 8   3  ( 2 ) 0.6423 0.6173  7.727757 11.01    *         *    *     
#> 9   3  ( 3 ) 0.6191 0.5925  7.973957 14.25         *    *         *
#> 10  4  ( 1 ) 0.6993 0.6707  7.168166  5.03    *         *    *    *
#> 11  4  ( 2 ) 0.6639 0.6319  7.579356  9.99         *    *    *    *
#> 12  4  ( 3 ) 0.6498 0.6164  7.736422 11.96    *    *    *    *     
#> 13  5  ( 1 ) 0.7067 0.6710  7.165369  6.00    *    *    *    *    *
#
mdl <- lm(Sepal.Length ~ ., data = iris)
sumry(mdl)
#> 
#> Summary Statistics:
#>                  Value      Performance    Measure  Err(Resids)    Metric
#> Observations =     150      R-Squared =    0.86731       MAPE =  0.041785
#> F-Statistic =   188.25      Adj-R2 =       0.86271       MAD  =   0.24286
#> Pr(b's=0) =     <2e-16 ***  Std.Err.Est =  0.30683       RMSE =   0.30063
#> 
#> Analysis of Variance:
#>                Deg.Frdm  Sum.of.Sqs  Mean.Sum.Sqs  F.statistic  p-value(F)    
#> Regression            5      88.612     17.722370       188.25      <2e-16 ***
#> Error(Resids)       144      13.556      0.094142                             
#> Total               149     102.168                                           
#> 
#> Coefficients:
#>                     Coefficient  Std.Error   t-stat   p-value          VIF
#> (Intercept)             2.17127   0.279794   7.7602  1.43e-12 ***         
#> Sepal.Width             0.49589   0.086070   5.7615  4.87e-08 ***   2.2275
#> Petal.Length            0.82924   0.068528  12.1009   < 2e-16 ***  23.1616
#> Petal.Width            -0.31516   0.151196  -2.0844   0.03889  *   21.0214
#> Species_versicolor     -0.72356   0.240169  -3.0127   0.00306 **   20.4234
#> Species_virginica      -1.02350   0.333726  -3.0669   0.00258 **   39.4344
#>                                                                      
#> Signif.Levels:  0 '***' 0.001 '** ' 0.01 ' * ' 0.05 ' . ' 0.1 '   ' 1
#>                                                                 
#> Summary of   Min       1Q      Mean    Median     3Q      Max   
#> Residuals: -0.7942  -0.2187   <3e-14  0.008987  0.2025   0.731  
#>                                                   
#> Call:  lm(formula = Sepal.Length ~ ., data = iris)
#
mdl <- lm(mpg ~ hp + qsec, data = mtcars)
sumry(mdl)
#> 
#> Summary Statistics:
#>                    Value      Performance    Measure  Err(Resids)  Metric
#> Observations =        32      R-Squared =    0.63688       MAPE =  0.1448
#> F-Statistic =     25.431      Adj-R2 =       0.61183       MAD  =  2.6984
#> Pr(b's=0) =     4.18e-07 ***  Std.Err.Est =    3.755       RMSE =  3.5746
#> 
#> Analysis of Variance:
#>                Deg.Frdm  Sum.of.Sqs  Mean.Sum.Sqs  F.statistic  p-value(F)    
#> Regression            2      717.15        358.58       25.431    4.18e-07 ***
#> Error(Resids)        29      408.89         14.10                             
#> Total                31     1126.05                                           
#> 
#> Coefficients:
#>              Coefficient  Std.Error   t-stat   p-value         VIF
#> (Intercept)    48.323705  11.103306   4.3522  0.000153 ***        
#> hp             -0.084593   0.013933  -6.0715  1.31e-06 ***  2.0063
#> qsec           -0.886580   0.534585  -1.6584  0.108007      2.0063
#>                                                                      
#> Signif.Levels:  0 '***' 0.001 '** ' 0.01 ' * ' 0.05 ' . ' 0.1 '   ' 1
#>                                                           
#> Summary of   Min     1Q    Median   Mean     3Q      Max  
#> Residuals: -5.178  -2.603  -0.5098 <6e-15   1.287   8.718 
#>                                                    
#> Call:  lm(formula = mpg ~ hp + qsec, data = mtcars)
lm_plot.4way(mdl)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.