The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The Analitica
package provides essential tools for:
It is suitable for researchers, educators, and analysts seeking quick and interpretable workflows.
Use descripYG()
to explore a numeric variable,
optionally grouped by a categorical variable:
#> n Mean Median SD Kurtosis Skewness CV Min Max P25
#> 1 474 34419.57 28875 17075.66 8.30863 2.117877 0.4961033 15750 135000 24000
#> P75 IQR Fence_Low Fence_High
#> 1 36937.5 12937.5 4593.75 56343.75
descripYG(d_e, vd = Sueldo_actual, vi = labor)
#> Picking joint bandwidth of 2460
#> Group n Mean Median SD Kurtosis Skewness CV Min
#> 1 1 363 27838.54 26550 7567.995 10.850828 1.8973062 0.27185316 15750
#> 2 2 27 30938.89 30750 2114.616 5.795226 -0.3472238 0.06834817 24300
#> 3 3 84 63977.80 60500 18244.776 4.913269 1.1597365 0.28517355 34410
#> Max P25 P75 IQR
#> 1 80000 22800.00 31200.00 8400
#> 2 35250 30150.00 30975.00 825
#> 3 135000 51956.25 71281.25 19325
You can assess variance assumptions using manual implementations:
Levene.Test(Sueldo_actual ~ labor, data = d_e)
#> $Statistic
#> [1] 36.089
#>
#> $df
#> df_between df_within
#> 2 471
#>
#> $p_value
#> [1] 0
#>
#> $Significance
#> [1] "***"
#>
#> $Decision
#> [1] "Heteroscedastic"
#>
#> $Method
#> [1] "Levene (median)"
#>
#> attr(,"class")
#> [1] "homocedasticidad"
BartlettTest(Sueldo_actual ~ labor, data = d_e)
#> $Statistic
#> [1] 194.6489
#>
#> $df
#> [1] 2
#>
#> $p_value
#> [1] 0
#>
#> $Significance
#> [1] "***"
#>
#> $Decision
#> [1] "Heterocedastic"
#>
#> $Method
#> [1] "Bartlett"
#>
#> attr(,"class")
#> [1] "homocedasticidad"
FKTest(Sueldo_actual ~ labor, data = d_e)
#> $Statistic
#> [1] 88.2881
#>
#> $df
#> [1] 2
#>
#> $p_value
#> [1] 0
#>
#> $Significance
#> [1] "***"
#>
#> $Decision
#> [1] "Heteroscedastic"
#>
#> $Method
#> [1] "Fligner-Killeen"
#>
#> attr(,"class")
#> [1] "homocedasticidad"
Detect univariate outliers with Grubbs’ test:
res <- grubbs_outliers(d_e, Sueldo_actual)
head(res[res$outL == TRUE, ])
#> ID Sexo FechaNAc educacion labor Sueldo_actual Sueldo_inicial antigüedad
#> 18 18 h 20/03/1986 16 3 103750 27510 97
#> 29 29 h 28/01/1964 19 3 135000 79980 96
#> 32 32 h 28/01/1984 19 3 110625 45000 96
#> 34 34 h 02/02/1969 19 3 92000 39990 96
#> 103 103 h 17/03/1989 19 3 97000 35010 91
#> 106 106 h 04/08/1962 19 3 91250 29490 91
#> experiencia minoria outL
#> 18 70 0 TRUE
#> 29 199 0 TRUE
#> 32 120 0 TRUE
#> 34 175 0 TRUE
#> 103 68 0 TRUE
#> 106 23 0 TRUE
Fit an ANOVA model and apply post hoc tests:
mod <- aov(Sueldo_actual ~ as.factor(labor), data = d_e)
resultado <- GHTest(mod)
summary(resultado)
#> =====================================
#> Multiple Comparison Method Summary
#> =====================================
#> Method used: Games-Howell
#>
#> >> Group means:
#> 1 2 3
#> 27838.54 30938.89 63977.80
#>
#> >> Order of means (from highest to lowest):
#> [1] "3" "2" "1"
#>
#> >> Pairwise comparisons:
#> Comparacion Diferencia t_value gl p_value Significancia
#> 1 1 - 2 3100.349 5.4518 93.07 0 ***
#> 11 1 - 3 36139.258 17.8034 89.71 0 ***
#> 2 2 - 3 33038.909 16.2606 89.58 0 ***
plot(resultado)
Other methods include TukeyTest()
,
ScheffeTest()
, DuncanTest()
,
SNKTest()
, T2Test()
, and
T3Test()
.
When assumptions are violated, try:
g1 <- d_e$Sueldo_actual[d_e$labor == 1]
g2 <- d_e$Sueldo_actual[d_e$labor == 2]
MWTest(g1, g2)
#> $Resultados
#> Comparacion Diferencia Valor_Critico p_value Significancia
#> Grupo2 Grupo1 - Grupo2 3100.349 NA 1e-04 ***
#>
#> $Promedios
#> Grupo1 Grupo2
#> 27838.54 30938.89
#>
#> $Orden_Medias
#> [1] "Grupo2" "Grupo1"
#>
#> $Metodo
#> [1] "Mann-Whitney U (two.sided, manual)"
#>
#> attr(,"class")
#> [1] "comparacion" "mannwhitney"
BMTest(g1, g2)
#> $Resultados
#> Comparacion Diferencia df SE t_critical p_value p_hat
#> Grupo1 Grupo1 - Grupo2 -3100.349 64.98 9.7586 1.9971 0 0.7297
#> Significancia
#> Grupo1 ***
#>
#> $Promedios
#> Grupo1 Grupo2
#> 27838.54 30938.89
#>
#> $df
#> [1] 64.98189
#>
#> $Orden_Medias
#> [1] "Grupo2" "Grupo1"
#>
#> $Metodo
#> [1] "Brunner-Munzel (two.sided)"
#>
#> $p_hat
#> [1] 0.7296704
#>
#> attr(,"class")
#> [1] "comparacion" "brunnermunzel"
BMpTest(g1, g2)
#> $Resultados
#> Comparacion Diferencia Valor_Critico p_value p_hat Significancia
#> Grupo2 Grupo1 - Grupo2 3100.349 NA 0 0.7297 *
#>
#> $Promedios
#> Grupo1 Grupo2
#> 27838.54 30938.89
#>
#> $Orden_Medias
#> [1] "Grupo2" "Grupo1"
#>
#> $Metodo
#> [1] "Brunner-Munzel (perm, two.sided)"
#>
#> attr(,"class")
#> [1] "comparacion" "brunnermunzel_perm"
Analitica
integrates descriptive analysis with robust
comparison methods for applied data exploration.
For detailed documentation, see ?Analitica
or
function-specific help pages like ?GHTest
or
?descripYG
.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.