The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction

We simulate data from a discrete distribution for the Rankin scores, which are ordinal integers from 0 to 6 in the following simulations. So we define a few scenarios.

library(ASSISTant)
null.uniform <- rep(1, 7L) ## uniform on 7 support points
hourglass <- c(1, 2, 2, 1, 2, 2, 1)
inverted.hourglass <- c(2, 1, 1, 2, 1, 1, 2)
bottom.heavy <- c(2, 2, 2, 1, 1, 1, 1)
bottom.heavier <- c(3, 3, 2, 2, 1, 1, 1)
top.heavy <- c(1, 1, 1, 1, 2, 2, 2)
top.heavier <- c(1, 1, 1, 2, 2, 3, 3)
ctlDist <- null.uniform
trtDist <- cbind(null.uniform, null.uniform, null.uniform,
                 hourglass, hourglass, hourglass)

##d <- generateDiscreteRankinScores(rep(1, 6), 10, ctlDist, trtDist)

Scenario S0

This is the null setting.

data(LLL.SETTINGS)
designParameters <- list(prevalence = rep(1/6, 6),
                         ctlDist = ctlDist,
                         trtDist = trtDist)

designA <- ASSISTDesign$new(trialParameters = LLL.SETTINGS$trialParameters,
                            designParameters = designParameters, discreteData = TRUE)
print(designA)
## Design Parameters:
##  Number of Groups: 6
##  Prevalence:
## 
## |    Group1|    Group2|    Group3|    Group4|    Group5|    Group6|
## |---------:|---------:|---------:|---------:|---------:|---------:|
## | 0.1666667| 0.1666667| 0.1666667| 0.1666667| 0.1666667| 0.1666667|
## 
##  Using Discrete Rankin scores? TRUE
## 
##  Null Rankin Distribution:
## 
## |   |    Group1|    Group2|    Group3|    Group4|    Group5|    Group6|
## |:--|---------:|---------:|---------:|---------:|---------:|---------:|
## |0  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |1  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |2  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |3  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |4  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |5  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
## |6  | 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571| 0.1428571|
##  Null Mean and SD
## 
## |     | Group1| Group2| Group3| Group4| Group5| Group6|
## |:----|------:|------:|------:|------:|------:|------:|
## |mean |      3|      3|      3|      3|      3|      3|
## |sd   |      2|      2|      2|      2|      2|      2|
##  Alternative Rankin Distribution:
## 
## 
## |   |    Group1|    Group2|    Group3|    Group4|    Group5|    Group6|
## |:--|---------:|---------:|---------:|---------:|---------:|---------:|
## |0  | 0.1428571| 0.1428571| 0.1428571| 0.0909091| 0.0909091| 0.0909091|
## |1  | 0.1428571| 0.1428571| 0.1428571| 0.1818182| 0.1818182| 0.1818182|
## |2  | 0.1428571| 0.1428571| 0.1428571| 0.1818182| 0.1818182| 0.1818182|
## |3  | 0.1428571| 0.1428571| 0.1428571| 0.0909091| 0.0909091| 0.0909091|
## |4  | 0.1428571| 0.1428571| 0.1428571| 0.1818182| 0.1818182| 0.1818182|
## |5  | 0.1428571| 0.1428571| 0.1428571| 0.1818182| 0.1818182| 0.1818182|
## |6  | 0.1428571| 0.1428571| 0.1428571| 0.0909091| 0.0909091| 0.0909091|
##  Alternative Mean and SD
## 
## |     | Group1| Group2| Group3|   Group4|   Group5|   Group6|
## |:----|------:|------:|------:|--------:|--------:|--------:|
## |mean |      3|      3|      3| 3.000000| 3.000000| 3.000000|
## |sd   |      2|      2|      2| 1.858641| 1.858641| 1.858641|
## 
## Trial Parameters:
## List of 5
##  $ N         : num [1:3] 300 400 500
##  $ type1Error: num 0.05
##  $ eps       : num 0.5
##  $ type2Error: num 0.2
##  $ effectSize: num 0.0642
## 
## Boundaries:
## 
## 
## |    btilde|        b|        c|
## |---------:|--------:|--------:|
## | -1.460993| 2.390404| 2.491775|
result <- designA$explore(numberOfSimulations = 5000, showProgress = FALSE)
analysis <- designA$analyze(result)
print(designA$summary(analysis))
## P(Reject H0_ITT) = 0.017200; P(Reject H0_subgp) = 0.021800; P(Reject H0) = 0.039000
## P(Early stop for efficacy [futility]) = 0.024400 [0.568800]
## Mean [SD] Randomized N = 419.620000 [76.093453]
## 
## Stage at exit (proportion)
## 
## 
## | exitStage| proportion|
## |---------:|----------:|
## |         1|     0.2106|
## |         2|     0.3826|
## |         3|     0.4068|
## 
## Mean [SD] Lost N = 183.574400 [92.930368]
## Mean [SD] Analyzed N = 236.045600 [97.620219]
## 
## Mean loss by futility stage and subgroup
## 
## 
## | FutilityStage| selectedGroup|      mean|        sd|
## |-------------:|-------------:|---------:|---------:|
## |             1|             1| 250.28419|  6.348342|
## |             1|             2| 200.61538|  8.317006|
## |             1|             3| 150.09895|  8.528229|
## |             1|             4| 100.22222|  8.528198|
## |             1|             5|  50.00383|  6.256512|
## |             2|             1| 332.21970|  6.692042|
## |             2|             2| 266.84762|  9.663354|
## |             2|             3| 201.28723| 10.548019|
## |             2|             4| 132.33628|  9.354726|
## |             2|             5|  66.10778|  7.323037|
## |             3|             1| 416.92357|  8.126832|
## |             3|             2| 332.46825|  9.598072|
## |             3|             3| 249.78462| 10.513177|
## |             3|             4| 166.63415| 10.659841|
## |             3|             5|  82.41924|  8.427552|
## 
## Chance of each subpopulation rejected
## 
## 
## | group| count| proportion|
## |-----:|-----:|----------:|
## |     1|    40|     0.0080|
## |     2|    30|     0.0060|
## |     3|    18|     0.0036|
## |     4|    13|     0.0026|
## |     5|     8|     0.0016|
## |     6|    86|     0.0172|
## 
## Counts by futility stage and subgroup choice
## 
## 
## | FutilityStage|   G1|  G2|  G3|  G4|  G5|
## |-------------:|----:|---:|---:|---:|---:|
## |             1| 1309| 715| 475| 414| 522|
## |             2|  132| 105|  94| 113| 167|
## |             3|  157| 126| 130| 164| 291|
## 
## CI Statistics:
## Overall coverage and coverage for rejections:
## 
## | overall| rejection|
## |-------:|---------:|
## |       1|         1|
## 
## P(theta_test is in the confidence interval)
## 
## 
## | coverage| selectedCount| rejectedCount|
## |--------:|-------------:|-------------:|
## |        1|          1598|            40|
## |        1|           946|            30|
## |        1|           699|            18|
## |        1|           691|            13|
## |        1|           980|             8|
## |        1|            86|            86|
## NULL

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.