The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Version: 0.2
Date: 2018-07-27
Title: All-Resolution Inference
Author: Livio Finos, Jelle Goeman, Wouter Weeda, Jonathan Rosenblatt, Aldo Solari
Maintainer: Livio Finos <livio.finos@unipd.it>
Description: It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
RoxygenNote: 6.0.1
Suggests: knitr, rmarkdown
Imports: hommel, RNifti, plyr
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2018-08-01 11:27:29 UTC; livio
Repository: CRAN
Date/Publication: 2018-08-01 12:20:02 UTC

All-Resolutions Inference

Description

It performs All-Resolutions Inference on fMRI data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis.

Author(s)

all of us

Examples

pvalue_name <- system.file("extdata", "pvalue.nii.gz", package="ARIbrain")
cluster_name <- system.file("extdata", "cluster_th_3.2.nii.gz", package="ARIbrain")
zstat_name <- system.file("extdata", "zstat.nii.gz", package="ARIbrain")
mask_name <- system.file("extdata", "mask.nii.gz", package="ARIbrain")

ARI(Pmap = pvalue_name, clusters= cluster_name, 
    mask=mask_name, Statmap = zstat_name)


Valid Circular Inference (ARI) for Brain Imaging

Description

Valid Circular Inference (ARI) for Brain Imaging

Usage

ARI(Pmap, clusters, mask = NULL, alpha = 0.05, Statmap = function(ix)
  -qnorm(Pmap[ix]), summary_stat = c("max", "center-of-mass"),
  silent = FALSE)

Arguments

Pmap

3D array of p-values or a (character) nifti file name.

clusters

3D array of cluster ids (0 when voxel does not belong to any cluster) or a (character) nifti file name.

mask

3D array of locicals (i.e. TRUE/FALSE in/out of the brain). Alternatively it may be a (character) nifti file name. If mask=NULL, it is assumed that non of the voxels have to be excluded.

alpha

Significance level. alpha=.05 by default.

Statmap

Statistics (usually t-values) on which the summaries are based. Can be either a 3D array, a (character) nifti file name or a function with argument ix used in the function to select the voxels belonging to a given cluster. By default Statmap = function(ix) -qnorm(Pmap[ix]) which convert the p-values in one-sided z-score.

summary_stat

Choose among =c("max", "center-of-mass").

silent

FALSE by default.

Value

A matrix reporting Size, FalseNull, TrueNull, ActiveProp and other statistics for each cluster.

Examples

pvalue_name <- system.file("extdata", "pvalue.nii.gz", package="ARIbrain")
cluster_name <- system.file("extdata", "cluster_th_3.2.nii.gz", package="ARIbrain")
zstat_name <- system.file("extdata", "zstat.nii.gz", package="ARIbrain")
mask_name <- system.file("extdata", "mask.nii.gz", package="ARIbrain")

print(mask_name)
print(pvalue_name)
print(cluster_name)
print(zstat_name)

ARI(Pmap = pvalue_name, clusters= cluster_name, 
    mask=mask_name, Statmap = zstat_name)
    

cluster_threshold

Description

Get spatially-connected clusters starting from a 3D map of logical values

Usage

cluster_threshold(map, max_dist = sqrt(3))

Arguments

map

3D map of logical values. TRUE if the voxel it to be clustered (e.g. it is supra-threshold).

max_dist

maximum distance allowed to in the same cluster. By default: max_dist=sqrt(3) i.e. comprises all the voxels up to the corners souranding the target voxel. A value such as max_dist=sqrt(2) excludes the corners.

Value

a 3D map (same size of map) with integer values identifying the cluster and 0 elsewhere.

Examples

## Not run: 
Tmap = RNifti::readNifti(system.file("extdata", "zstat.nii.gz", package="ARIbrain"))
clstr=cluster_threshold(Tmap>3.2)
table(clstr)

## End(Not run)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.