CRAN Package Check Results for Maintainer ‘Sebastian Hönel <sebastian.honel at lnu.se>’

Last updated on 2025-12-28 03:52:17 CET.

Package ERROR NOTE OK
mmb 2 5 6

Package mmb

Current CRAN status: ERROR: 2, NOTE: 5, OK: 6

Version: 0.13.3
Check: CRAN incoming feasibility
Result: NOTE Maintainer: ‘Sebastian Hönel <sebastian.honel@lnu.se>’ No Authors@R field in DESCRIPTION. Please add one, modifying Authors@R: person(given = "Sebastian", family = "Hönel", role = c("aut", "cre"), email = "sebastian.honel@lnu.se") as necessary. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.13.3
Check: examples
Result: ERROR Running examples in ‘mmb-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: bayesProbabilityAssign > ### Title: Assign probabilities to one or more samples, given some training > ### data. > ### Aliases: bayesProbabilityAssign > ### Keywords: classification full-dependency inferencing > > ### ** Examples > > w <- mmb::getWarnings() > mmb::setWarnings(FALSE) [1] FALSE > > set.seed(84735) > rn <- base::sample(rownames(iris), 150) > dfTrain <- iris[rn[1:120], ] > dfValid <- iris[rn[121:150], !(colnames(iris) %in% "Species") ] > mmb::bayesProbabilityAssign(dfTrain, dfValid, "Species") Error in xtfrm.data.frame(list(virginica = 0.0475794229174146, versicolor = 0.0513857767508078, : cannot xtfrm data frames Calls: <Anonymous> -> xtfrm -> xtfrm.data.frame Execution halted Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.13.3
Check: tests
Result: ERROR Running ‘helpers.R’ [0s/1s] Running ‘testthat.R’ [36s/52s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(mmb) > > test_check("mmb") Saving _problems/test_bayes-346.R Saving _problems/test_bayes-429.R Saving _problems/test_bayes-462.R Saving _problems/test_bayesRegress-40.R Saving _problems/test_bayesRegress-57.R Saving _problems/test_bayesRegress-122.R Saving _problems/test_discretization-68.R Saving _problems/test_pdfAndProb-13.R Saving _problems/test_pdfAndProb-21.R Saving _problems/test_warnings-16.R [ FAIL 10 | WARN 139 | SKIP 0 | PASS 308 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_bayes.R:343:3'): the full Bayesian works with many variables ─── Error in `xtfrm.data.frame(structure(list(`4` = 0, `8` = 0, `6` = 0), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:343:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayes.R:427:3'): assigning for multiple works using naive Bayes ── Error in `xtfrm.data.frame(structure(list(virginica = 0.000578947368421053, versicolor = 0.000966428571428572, setosa = 0.2728171875), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:427:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayes.R:460:3'): we can do online learning and return factors ── Error in `xtfrm.data.frame(structure(list(setosa = 0.0133000875267292, versicolor = 0.0722285917992075, virginica = 2.60391628278781), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:460:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayesRegress.R:36:5'): we can also sample from the most likely range only ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `1` = 0.51, `2` = 0.18, `3` = 0.11, `6` = 0.27, `5` = 0.31, `7` = 0.15, `4` = 0.17), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. ├─testthat::expect_warning(...) at test_bayesRegress.R:35:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─mmb::bayesRegress(...) at test_bayesRegress.R:36:5 7. ├─base::xtfrm(`<df[,8]>`) 8. └─base::xtfrm.data.frame(`<df[,8]>`) ── Error ('test_bayesRegress.R:53:5'): custom regressor errors are handled properly ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `3` = 1.1, `1` = 0, `2` = 0), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. ├─testthat::expect_warning(...) at test_bayesRegress.R:52:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─mmb::bayesRegress(...) at test_bayesRegress.R:53:5 7. ├─base::xtfrm(`<df[,4]>`) 8. └─base::xtfrm.data.frame(`<df[,4]>`) ── Error ('test_bayesRegress.R:120:3'): regression for multiple values works in simple and online, too ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `2` = 0.186029411764706, `1` = 0.071875, `3` = 0.167013888888889, `4` = 0.00379322681452557, `6` = 0.00570421505598071, `5` = 1.49004290740905, `7` = 0.174182093347807), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesRegressAssign(...) at test_bayesRegress.R:120:3 2. └─mmb::bayesRegress(...) 3. ├─base::xtfrm(`<df[,8]>`) 4. └─base::xtfrm.data.frame(`<df[,8]>`) ── Failure ('test_discretization.R:68:3'): numRanges is not required ─────────── Expected `discretizeVariableToRanges(c(1))` to produce warnings. ── Failure ('test_pdfAndProb.R:11:3'): estimation for small data works ───────── Expected `{ ... }` to produce warnings. ── Failure ('test_pdfAndProb.R:19:3'): estimation for small data works ───────── Expected `{ ... }` to produce warnings. ── Failure ('test_warnings.R:16:3'): en-/disabling warnings/errors works ─────── Expected `mmb::getWarnings()` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE [ FAIL 10 | WARN 139 | SKIP 0 | PASS 308 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.13.3
Check: tests
Result: ERROR Running ‘helpers.R’ [0s/0s] Running ‘testthat.R’ [22s/28s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(mmb) > > test_check("mmb") Saving _problems/test_bayes-346.R Saving _problems/test_bayes-429.R Saving _problems/test_bayes-462.R Saving _problems/test_bayesRegress-40.R Saving _problems/test_bayesRegress-57.R Saving _problems/test_bayesRegress-122.R Saving _problems/test_discretization-68.R Saving _problems/test_pdfAndProb-13.R Saving _problems/test_pdfAndProb-21.R Saving _problems/test_warnings-16.R [ FAIL 10 | WARN 139 | SKIP 0 | PASS 308 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_bayes.R:343:3'): the full Bayesian works with many variables ─── Error in `xtfrm.data.frame(structure(list(`4` = 0, `8` = 0, `6` = 0), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:343:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayes.R:427:3'): assigning for multiple works using naive Bayes ── Error in `xtfrm.data.frame(structure(list(virginica = 0.000578947368421053, versicolor = 0.000966428571428572, setosa = 0.2728171875), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:427:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayes.R:460:3'): we can do online learning and return factors ── Error in `xtfrm.data.frame(structure(list(setosa = 0.0133000875267292, versicolor = 0.0722285917992075, virginica = 2.60391628278781), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesProbabilityAssign(...) at test_bayes.R:460:3 2. ├─base::xtfrm(`<df[,3]>`) 3. └─base::xtfrm.data.frame(`<df[,3]>`) ── Error ('test_bayesRegress.R:36:5'): we can also sample from the most likely range only ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `1` = 0.51, `2` = 0.18, `3` = 0.11, `6` = 0.27, `5` = 0.31, `7` = 0.15, `4` = 0.17), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. ├─testthat::expect_warning(...) at test_bayesRegress.R:35:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─mmb::bayesRegress(...) at test_bayesRegress.R:36:5 7. ├─base::xtfrm(`<df[,8]>`) 8. └─base::xtfrm.data.frame(`<df[,8]>`) ── Error ('test_bayesRegress.R:53:5'): custom regressor errors are handled properly ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `3` = 1.1, `1` = 0, `2` = 0), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. ├─testthat::expect_warning(...) at test_bayesRegress.R:52:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─mmb::bayesRegress(...) at test_bayesRegress.R:53:5 7. ├─base::xtfrm(`<df[,4]>`) 8. └─base::xtfrm.data.frame(`<df[,4]>`) ── Error ('test_bayesRegress.R:120:3'): regression for multiple values works in simple and online, too ── Error in `xtfrm.data.frame(structure(list(rowname = "1", `2` = 0.186029411764706, `1` = 0.071875, `3` = 0.167013888888889, `4` = 0.00379322681452557, `6` = 0.00570421505598071, `5` = 1.49004290740905, `7` = 0.174182093347807), row.names = 1L, class = "data.frame"))`: cannot xtfrm data frames Backtrace: ▆ 1. └─mmb::bayesRegressAssign(...) at test_bayesRegress.R:120:3 2. └─mmb::bayesRegress(...) 3. ├─base::xtfrm(`<df[,8]>`) 4. └─base::xtfrm.data.frame(`<df[,8]>`) ── Failure ('test_discretization.R:68:3'): numRanges is not required ─────────── Expected `discretizeVariableToRanges(c(1))` to produce warnings. ── Failure ('test_pdfAndProb.R:11:3'): estimation for small data works ───────── Expected `{ ... }` to produce warnings. ── Failure ('test_pdfAndProb.R:19:3'): estimation for small data works ───────── Expected `{ ... }` to produce warnings. ── Failure ('test_warnings.R:16:3'): en-/disabling warnings/errors works ─────── Expected `mmb::getWarnings()` to be TRUE. Differences: `actual`: FALSE `expected`: TRUE [ FAIL 10 | WARN 139 | SKIP 0 | PASS 308 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.13.3
Check: dependencies in R code
Result: NOTE Namespaces in Imports field not imported from: ‘datasets’ ‘doParallel’ ‘parallel’ All declared Imports should be used. Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 0.13.3
Check: LazyData
Result: NOTE 'LazyData' is specified without a 'data' directory Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.