Last updated on 2025-12-04 07:51:38 CET.
| Package | ERROR | OK |
|---|---|---|
| SuperLearner | 2 | 11 |
Current CRAN status: ERROR: 2, OK: 11
Version: 2.0-29
Check: tests
Result: ERROR
Running ‘testthat.R’ [139s/326s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(SuperLearner)
Loading required package: nnls
Loading required package: gam
Loading required package: splines
Loading required package: foreach
Loaded gam 1.22-6
Super Learner
Version: 2.0-29
Package created on 2024-02-06
>
> test_check("SuperLearner")
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Saving _problems/test-XGBoost-25.R
Warning: The response y is integer, bartMachine will run regression.
Warning: The response y is integer, bartMachine will run regression.
Warning: The response y is integer, bartMachine will run regression.
lasso-penalized linear regression with n=506, p=13
At minimum cross-validation error (lambda=0.0222):
-------------------------------------------------
Nonzero coefficients: 11
Cross-validation error (deviance): 23.29
R-squared: 0.72
Signal-to-noise ratio: 2.63
Scale estimate (sigma): 4.826
lasso-penalized logistic regression with n=506, p=13
At minimum cross-validation error (lambda=0.0026):
-------------------------------------------------
Nonzero coefficients: 12
Cross-validation error (deviance): 0.66
R-squared: 0.48
Signal-to-noise ratio: 0.94
Prediction error: 0.123
lasso-penalized linear regression with n=506, p=13
At minimum cross-validation error (lambda=0.0362):
-------------------------------------------------
Nonzero coefficients: 11
Cross-validation error (deviance): 23.30
R-squared: 0.72
Signal-to-noise ratio: 2.62
Scale estimate (sigma): 4.827
lasso-penalized logistic regression with n=506, p=13
At minimum cross-validation error (lambda=0.0016):
-------------------------------------------------
Nonzero coefficients: 13
Cross-validation error (deviance): 0.63
R-squared: 0.50
Signal-to-noise ratio: 0.99
Prediction error: 0.132
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.biglasso"), cvControl = list(V = 2))
Risk Coef
SL.mean_All 84.62063 0.02136708
SL.biglasso_All 26.01864 0.97863292
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.biglasso"), cvControl = list(V = 2))
Risk Coef
SL.mean_All 0.2346857 0
SL.biglasso_All 0.1039122 1
Y
0 1
53 47
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
$params$ntree
[1] 100
[1] "SL.randomForest_1" "X" "Y"
[4] "create_rf" "data"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.045984 1
$grid
mtry
1 1
2 4
3 20
$names
[1] "SL.randomForest_1" "SL.randomForest_2" "SL.randomForest_3"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.06729890 0.93195369
SL.randomForest_2_All 0.07219426 0.00000000
SL.randomForest_3_All 0.07243423 0.06804631
$grid
alpha
1 0.00
2 0.25
3 0.50
4 0.75
5 1.00
$names
[1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"
[5] "SL.glmnet_1"
$base_learner
[1] "SL.glmnet"
$params
list()
[1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"
[5] "SL.glmnet_1"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = ls(learners),
cvControl = list(V = 2), env = learners)
Risk Coef
SL.glmnet_0_All 0.08849610 0
SL.glmnet_0.25_All 0.08116755 0
SL.glmnet_0.5_All 0.06977106 1
SL.glmnet_0.75_All 0.07686953 0
SL.glmnet_1_All 0.07730595 0
Call:
SuperLearner(Y = Y, X = X_clean, family = binomial(), SL.library = c("SL.mean",
svm$names), cvControl = list(V = 3))
Risk Coef
SL.mean_All 0.25711218 0.0000000
SL.svm_polynomial_All 0.08463484 0.1443046
SL.svm_radial_All 0.06530910 0.0000000
SL.svm_sigmoid_All 0.05716227 0.8556954
Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Degrees of Freedom: 505 Total (i.e. Null); 492 Residual
Null Deviance: 42720
Residual Deviance: 11080 AIC: 3028
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 22.51785)
Null deviance: 42716 on 505 degrees of freedom
Residual deviance: 11079 on 492 degrees of freedom
AIC: 3027.6
Number of Fisher Scoring iterations: 2
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.724 0.006446 **
crim -0.040649 0.049796 -0.816 0.414321
zn 0.012134 0.010678 1.136 0.255786
indus -0.040715 0.045615 -0.893 0.372078
chas 0.248209 0.653283 0.380 0.703989
nox -3.601085 2.924365 -1.231 0.218170
rm 1.155157 0.374843 3.082 0.002058 **
age -0.018660 0.009319 -2.002 0.045252 *
dis -0.518934 0.146286 -3.547 0.000389 ***
rad 0.255522 0.061391 4.162 3.15e-05 ***
tax -0.009500 0.003107 -3.057 0.002233 **
ptratio -0.409317 0.103191 -3.967 7.29e-05 ***
black -0.001451 0.002558 -0.567 0.570418
lstat -0.318436 0.054735 -5.818 5.96e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 669.76 on 505 degrees of freedom
Residual deviance: 296.39 on 492 degrees of freedom
AIC: 324.39
Number of Fisher Scoring iterations: 7
[1] "coefficients" "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "qr" "family" "linear.predictors"
[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "call"
[22] "formula" "terms" "data"
[25] "offset" "control" "method"
[28] "contrasts" "xlevels"
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 22.51785)
Null deviance: 42716 on 505 degrees of freedom
Residual deviance: 11079 on 492 degrees of freedom
AIC: 3027.6
Number of Fisher Scoring iterations: 2
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.724 0.006446 **
crim -0.040649 0.049796 -0.816 0.414321
zn 0.012134 0.010678 1.136 0.255786
indus -0.040715 0.045615 -0.893 0.372078
chas 0.248209 0.653283 0.380 0.703989
nox -3.601085 2.924365 -1.231 0.218170
rm 1.155157 0.374843 3.082 0.002058 **
age -0.018660 0.009319 -2.002 0.045252 *
dis -0.518934 0.146286 -3.547 0.000389 ***
rad 0.255522 0.061391 4.162 3.15e-05 ***
tax -0.009500 0.003107 -3.057 0.002233 **
ptratio -0.409317 0.103191 -3.967 7.29e-05 ***
black -0.001451 0.002558 -0.567 0.570418
lstat -0.318436 0.054735 -5.818 5.96e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 669.76 on 505 degrees of freedom
Residual deviance: 296.39 on 492 degrees of freedom
AIC: 324.39
Number of Fisher Scoring iterations: 7
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.glm"))
Risk Coef
SL.mean_All 84.74142 0.0134192
SL.glm_All 23.62549 0.9865808
V1
Min. :-3.921
1st Qu.:17.514
Median :22.124
Mean :22.533
3rd Qu.:27.345
Max. :44.376
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.glm"))
Risk Coef
SL.mean_All 0.23580362 0.01315872
SL.glm_All 0.09519266 0.98684128
V1
Min. :0.004942
1st Qu.:0.035424
Median :0.196222
Mean :0.375494
3rd Qu.:0.781687
Max. :0.991313
Got an error, as expected.
<simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>
Got an error, as expected.
<simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>
Call:
lda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Coefficients of linear discriminants:
LD1
crim 0.0012515925
zn 0.0095179029
indus -0.0166376334
chas 0.1399207112
nox -2.9934367740
rm 0.5612713068
age -0.0128420045
dis -0.3095403096
rad 0.0695027989
tax -0.0027771271
ptratio -0.2059853828
black 0.0006058031
lstat -0.0816668897
Call:
lda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Coefficients of linear discriminants:
LD1
crim 0.0012515925
zn 0.0095179029
indus -0.0166376334
chas 0.1399207112
nox -2.9934367740
rm 0.5612713068
age -0.0128420045
dis -0.3095403096
rad 0.0695027989
tax -0.0027771271
ptratio -0.2059853828
black 0.0006058031
lstat -0.0816668897
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-0.80469 -0.23612 -0.03105 0.23080 1.05224
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***
crim 0.0003028 0.0023585 0.128 0.897888
zn 0.0023028 0.0009851 2.338 0.019808 *
indus -0.0040254 0.0044131 -0.912 0.362135
chas 0.0338534 0.0618295 0.548 0.584264
nox -0.7242540 0.2741160 -2.642 0.008501 **
rm 0.1357981 0.0299915 4.528 7.48e-06 ***
age -0.0031071 0.0009480 -3.278 0.001121 **
dis -0.0748924 0.0143135 -5.232 2.48e-07 ***
rad 0.0168160 0.0047612 3.532 0.000451 ***
tax -0.0006719 0.0002699 -2.490 0.013110 *
ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***
black 0.0001466 0.0001928 0.760 0.447370
lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3405 on 492 degrees of freedom
Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065
F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16
[1] "coefficients" "residuals" "fitted.values" "effects"
[5] "weights" "rank" "assign" "qr"
[9] "df.residual" "xlevels" "call" "terms"
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-0.80469 -0.23612 -0.03105 0.23080 1.05224
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***
crim 0.0003028 0.0023585 0.128 0.897888
zn 0.0023028 0.0009851 2.338 0.019808 *
indus -0.0040254 0.0044131 -0.912 0.362135
chas 0.0338534 0.0618295 0.548 0.584264
nox -0.7242540 0.2741160 -2.642 0.008501 **
rm 0.1357981 0.0299915 4.528 7.48e-06 ***
age -0.0031071 0.0009480 -3.278 0.001121 **
dis -0.0748924 0.0143135 -5.232 2.48e-07 ***
rad 0.0168160 0.0047612 3.532 0.000451 ***
tax -0.0006719 0.0002699 -2.490 0.013110 *
ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***
black 0.0001466 0.0001928 0.760 0.447370
lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3405 on 492 degrees of freedom
Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065
F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.lm"))
Risk Coef
SL.mean_All 84.6696 0.02186479
SL.lm_All 24.3340 0.97813521
V1
Min. :-3.695
1st Qu.:17.557
Median :22.128
Mean :22.533
3rd Qu.:27.303
Max. :44.189
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.lm"))
Risk Coef
SL.mean_All 0.2349366 0
SL.lm_All 0.1125027 1
V1
Min. :0.0000
1st Qu.:0.1281
Median :0.3530
Mean :0.3899
3rd Qu.:0.6091
Max. :1.0000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNLS", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.1986827 0.31226655
SL.glmnet_All 0.1803963 0.66105261
SL.mean_All 0.2534500 0.02668084
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.NNLS", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.1921176 0.08939677
SL.glmnet_All 0.1635548 0.91060323
SL.mean_All 0.2504500 0.00000000
SL.bad_algorithm_All NA 0.00000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNLS2", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2279346 0.05397859
SL.glmnet_All 0.1670620 0.94602141
SL.mean_All 0.2504500 0.00000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNloglik", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.5804469 0.1760951
SL.glmnet_All 0.5010294 0.8239049
SL.mean_All 0.6964542 0.0000000
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.NNloglik", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All Inf 0.1338597
SL.glmnet_All 0.5027498 0.8661403
SL.mean_All 0.7000679 0.0000000
SL.bad_algorithm_All NA 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.CC_LS", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2033781 0.16438434
SL.glmnet_All 0.1740498 0.82391928
SL.mean_All 0.2516500 0.01169638
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.CC_nloglik", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 295.8455 0.1014591
SL.glmnet_All 205.3289 0.7867610
SL.mean_All 277.1389 0.1117798
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.CC_nloglik", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 212.5569 0.2707202
SL.glmnet_All 193.9384 0.7292798
SL.mean_All 277.1389 0.0000000
SL.bad_algorithm_All NA 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.AUC", verbose = FALSE, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2533780 0.3333333
SL.glmnet_All 0.1869683 0.3333333
SL.mean_All 0.5550495 0.3333333
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Removing failed learners: SL.bad_algorithm_All
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.AUC", verbose = TRUE, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2467721 0.2982123
SL.glmnet_All 0.1705535 0.3508938
SL.mean_All 0.5150135 0.3508938
SL.bad_algorithm_All NA 0.0000000
Call:
qda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Call:
qda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Y
0 1
62 38
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = sl_lib, cvControl = list(V = 2))
Risk Coef
SL.randomForest_All 0.0384594 0.98145221
SL.mean_All 0.2356000 0.01854779
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.05215472 1
SL.randomForest_1 <- function(...) SL.randomForest(...)
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1"
[1] 1
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.04151372 1
$grid
mtry
1 1
2 2
$names
[1] "SL.randomForest_1" "SL.randomForest_2"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1" "SL.randomForest_2"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.05852161 0.8484752
SL.randomForest_2_All 0.05319324 0.1515248
$grid
mtry
1 1
2 2
$names
[1] "SL.randomForest_1" "SL.randomForest_2"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1" "SL.randomForest_2"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.04540374 0.2120815
SL.randomForest_2_All 0.03931360 0.7879185
$grid
mtry nodesize maxnodes
1 1 NULL NULL
2 2 NULL NULL
$names
[1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_NULL_NULL_All 0.05083433 0.2589592
SL.randomForest_2_NULL_NULL_All 0.04697238 0.7410408
$grid
mtry maxnodes
1 1 5
2 2 5
3 1 10
4 2 10
5 1 NULL
6 2 NULL
$names
[1] "SL.randomForest_1_5" "SL.randomForest_2_5" "SL.randomForest_1_10"
[4] "SL.randomForest_2_10" "SL.randomForest_1_NULL" "SL.randomForest_2_NULL"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_5_All 0.04597977 0.0000000
SL.randomForest_2_5_All 0.03951320 0.0000000
SL.randomForest_1_10_All 0.04337471 0.1117946
SL.randomForest_2_10_All 0.03898477 0.8882054
SL.randomForest_1_NULL_All 0.04395171 0.0000000
SL.randomForest_2_NULL_All 0.03928269 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_5_All 0.05330062 0.4579034
SL.randomForest_2_5_All 0.05189278 0.0000000
SL.randomForest_1_10_All 0.05263432 0.1614643
SL.randomForest_2_10_All 0.05058144 0.0000000
SL.randomForest_1_NULL_All 0.05415397 0.0000000
SL.randomForest_2_NULL_All 0.05036643 0.3806323
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_5_All 0.05978213 0
SL.randomForest_2_5_All 0.05628852 0
SL.randomForest_1_10_All 0.05751494 0
SL.randomForest_2_10_All 0.05889935 0
SL.randomForest_1_NULL_All 0.05629605 1
SL.randomForest_2_NULL_All 0.05807645 0
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Regression
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 10.39743
R squared (OOB): 0.8770796
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Probability estimation
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.08374536
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Regression
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 10.74731
R squared (OOB): 0.8729433
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Probability estimation
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.08326064
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***
crim -1.080e-01 0.032865 -3.2865 1.087e-03 **
zn 4.642e-02 0.013727 3.3816 7.781e-04 ***
indus 2.056e-02 0.061496 0.3343 7.383e-01
chas 2.687e+00 0.861580 3.1184 1.925e-03 **
nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***
rm 3.810e+00 0.417925 9.1161 1.979e-18 ***
age 6.922e-04 0.013210 0.0524 9.582e-01
dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***
rad 3.060e-01 0.066346 4.6129 5.071e-06 ***
tax -1.233e-02 0.003761 -3.2800 1.112e-03 **
ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***
black 9.312e-03 0.002686 3.4668 5.729e-04 ***
lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 42716.3;
residuals df: 492; residuals deviance: 11078.78;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 3027.609; log Likelihood: -1498.804;
RSS: 11078.8; dispersion: 22.51785; iterations: 1;
rank: 14; max tolerance: 1e+00; convergence: FALSE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.7242 6.446e-03 **
crim -0.040649 0.049796 -0.8163 4.143e-01
zn 0.012134 0.010678 1.1364 2.558e-01
indus -0.040715 0.045615 -0.8926 3.721e-01
chas 0.248209 0.653283 0.3799 7.040e-01
nox -3.601085 2.924365 -1.2314 2.182e-01
rm 1.155157 0.374843 3.0817 2.058e-03 **
age -0.018660 0.009319 -2.0023 4.525e-02 *
dis -0.518934 0.146286 -3.5474 3.891e-04 ***
rad 0.255522 0.061391 4.1622 3.152e-05 ***
tax -0.009500 0.003107 -3.0574 2.233e-03 **
ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***
black -0.001451 0.002558 -0.5674 5.704e-01
lstat -0.318436 0.054735 -5.8178 5.964e-09 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 669.76;
residuals df: 492; residuals deviance: 296.39;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 324.3944; log Likelihood: -148.1972;
RSS: 1107.5; dispersion: 1; iterations: 7;
rank: 14; max tolerance: 7.55e-12; convergence: TRUE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***
crim -1.080e-01 0.032865 -3.2865 1.087e-03 **
zn 4.642e-02 0.013727 3.3816 7.781e-04 ***
indus 2.056e-02 0.061496 0.3343 7.383e-01
chas 2.687e+00 0.861580 3.1184 1.925e-03 **
nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***
rm 3.810e+00 0.417925 9.1161 1.979e-18 ***
age 6.922e-04 0.013210 0.0524 9.582e-01
dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***
rad 3.060e-01 0.066346 4.6129 5.071e-06 ***
tax -1.233e-02 0.003761 -3.2800 1.112e-03 **
ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***
black 9.312e-03 0.002686 3.4668 5.729e-04 ***
lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 42716.3;
residuals df: 492; residuals deviance: 11078.78;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 3027.609; log Likelihood: -1498.804;
RSS: 11078.8; dispersion: 22.51785; iterations: 1;
rank: 14; max tolerance: 1e+00; convergence: FALSE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.7242 6.446e-03 **
crim -0.040649 0.049796 -0.8163 4.143e-01
zn 0.012134 0.010678 1.1364 2.558e-01
indus -0.040715 0.045615 -0.8926 3.721e-01
chas 0.248209 0.653283 0.3799 7.040e-01
nox -3.601085 2.924365 -1.2314 2.182e-01
rm 1.155157 0.374843 3.0817 2.058e-03 **
age -0.018660 0.009319 -2.0023 4.525e-02 *
dis -0.518934 0.146286 -3.5474 3.891e-04 ***
rad 0.255522 0.061391 4.1622 3.152e-05 ***
tax -0.009500 0.003107 -3.0574 2.233e-03 **
ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***
black -0.001451 0.002558 -0.5674 5.704e-01
lstat -0.318436 0.054735 -5.8178 5.964e-09 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 669.76;
residuals df: 492; residuals deviance: 296.39;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 324.3944; log Likelihood: -148.1972;
RSS: 1107.5; dispersion: 1; iterations: 7;
rank: 14; max tolerance: 7.55e-12; convergence: TRUE.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 36.459488 5.103459 7.144 3.283e-12 ***
crim -0.108011 0.032865 -3.287 1.087e-03 **
zn 0.046420 0.013727 3.382 7.781e-04 ***
indus 0.020559 0.061496 0.334 7.383e-01
chas 2.686734 0.861580 3.118 1.925e-03 **
nox -17.766611 3.819744 -4.651 4.246e-06 ***
rm 3.809865 0.417925 9.116 1.979e-18 ***
age 0.000692 0.013210 0.052 9.582e-01
dis -1.475567 0.199455 -7.398 6.013e-13 ***
rad 0.306049 0.066346 4.613 5.071e-06 ***
tax -0.012335 0.003761 -3.280 1.112e-03 **
ptratio -0.952747 0.130827 -7.283 1.309e-12 ***
black 0.009312 0.002686 3.467 5.729e-04 ***
lstat -0.524758 0.050715 -10.347 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 4.745298 on 492 degrees of freedom;
observations: 506; R^2: 0.741; adjusted R^2: 0.734;
F-statistic: 108.1 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 1.667540 0.366239 4.553 6.670e-06 ***
crim 0.000303 0.002358 0.128 8.979e-01
zn 0.002303 0.000985 2.338 1.981e-02 *
indus -0.004025 0.004413 -0.912 3.621e-01
chas 0.033853 0.061829 0.548 5.843e-01
nox -0.724254 0.274116 -2.642 8.501e-03 **
rm 0.135798 0.029992 4.528 7.483e-06 ***
age -0.003107 0.000948 -3.278 1.121e-03 **
dis -0.074892 0.014313 -5.232 2.482e-07 ***
rad 0.016816 0.004761 3.532 4.515e-04 ***
tax -0.000672 0.000270 -2.490 1.311e-02 *
ptratio -0.049838 0.009389 -5.308 1.677e-07 ***
black 0.000147 0.000193 0.760 4.474e-01
lstat -0.019759 0.003639 -5.429 8.912e-08 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 0.340537 on 492 degrees of freedom;
observations: 506; R^2: 0.519; adjusted R^2: 0.506;
F-statistic: 40.86 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 36.459488 5.103459 7.144 3.283e-12 ***
crim -0.108011 0.032865 -3.287 1.087e-03 **
zn 0.046420 0.013727 3.382 7.781e-04 ***
indus 0.020559 0.061496 0.334 7.383e-01
chas 2.686734 0.861580 3.118 1.925e-03 **
nox -17.766611 3.819744 -4.651 4.246e-06 ***
rm 3.809865 0.417925 9.116 1.979e-18 ***
age 0.000692 0.013210 0.052 9.582e-01
dis -1.475567 0.199455 -7.398 6.013e-13 ***
rad 0.306049 0.066346 4.613 5.071e-06 ***
tax -0.012335 0.003761 -3.280 1.112e-03 **
ptratio -0.952747 0.130827 -7.283 1.309e-12 ***
black 0.009312 0.002686 3.467 5.729e-04 ***
lstat -0.524758 0.050715 -10.347 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 4.745298 on 492 degrees of freedom;
observations: 506; R^2: 0.741; adjusted R^2: 0.734;
F-statistic: 108.1 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 1.667540 0.366239 4.553 6.670e-06 ***
crim 0.000303 0.002358 0.128 8.979e-01
zn 0.002303 0.000985 2.338 1.981e-02 *
indus -0.004025 0.004413 -0.912 3.621e-01
chas 0.033853 0.061829 0.548 5.843e-01
nox -0.724254 0.274116 -2.642 8.501e-03 **
rm 0.135798 0.029992 4.528 7.483e-06 ***
age -0.003107 0.000948 -3.278 1.121e-03 **
dis -0.074892 0.014313 -5.232 2.482e-07 ***
rad 0.016816 0.004761 3.532 4.515e-04 ***
tax -0.000672 0.000270 -2.490 1.311e-02 *
ptratio -0.049838 0.009389 -5.308 1.677e-07 ***
black 0.000147 0.000193 0.760 4.474e-01
lstat -0.019759 0.003639 -5.429 8.912e-08 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 0.340537 on 492 degrees of freedom;
observations: 506; R^2: 0.519; adjusted R^2: 0.506;
F-statistic: 40.86 on 13 and 492 df; p-value: 0.
[ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]
══ Skipped tests (9) ═══════════════════════════════════════════════════════════
• empty test (9): , , , , , , , ,
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-XGBoost.R:25:1'): (code run outside of `test_that()`) ──────────
Error in `UseMethod("predict")`: no applicable method for 'predict' applied to an object of class "NULL"
Backtrace:
▆
1. ├─stats::predict(sl, X) at test-XGBoost.R:25:1
2. └─SuperLearner::predict.SuperLearner(sl, X)
3. ├─base::do.call(...)
4. └─stats::predict(...)
[ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 2.0-29
Check: re-building of vignette outputs
Result: ERROR
Error(s) in re-building vignettes:
--- re-building ‘Guide-to-SuperLearner.Rmd’ using rmarkdown
Boston package:MASS R Documentation
_<08>H_<08>o_<08>u_<08>s_<08>i_<08>n_<08>g _<08>V_<08>a_<08>l_<08>u_<08>e_<08>s _<08>i_<08>n _<08>S_<08>u_<08>b_<08>u_<08>r_<08>b_<08>s _<08>o_<08>f _<08>B_<08>o_<08>s_<08>t_<08>o_<08>n
_<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n:
The 'Boston' data frame has 506 rows and 14 columns.
_<08>U_<08>s_<08>a_<08>g_<08>e:
Boston
_<08>F_<08>o_<08>r_<08>m_<08>a_<08>t:
This data frame contains the following columns:
'crim'
per capita crime rate by town.
'zn'
proportion of residential land zoned for lots over 25,000
sq.ft.
'indus'
proportion of non-retail business acres per town.
'chas'
Charles River dummy variable (= 1 if tract bounds river; 0
otherwise).
'nox'
nitrogen oxides concentration (parts per 10 million).
'rm'
average number of rooms per dwelling.
'age'
proportion of owner-occupied units built prior to 1940.
'dis'
weighted mean of distances to five Boston employment centres.
'rad'
index of accessibility to radial highways.
'tax'
full-value property-tax rate per $10,000.
'ptratio'
pupil-teacher ratio by town.
'black'
1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
town.
'lstat'
lower status of the population (percent).
'medv'
median value of owner-occupied homes in $1000s.
_<08>S_<08>o_<08>u_<08>r_<08>c_<08>e:
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the
demand for clean air. _J. Environ. Economics and Management_ *5*,
81-102.
Belsley D.A., Kuh, E. and Welsch, R.E. (1980) _Regression
Diagnostics. Identifying Influential Data and Sources of
Collinearity._ New York: Wiley.
Quitting from Guide-to-SuperLearner.Rmd:557-590 [xgboost]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<error/rlang_error>
Error in `FUN()`:
! subscript out of bounds
---
Backtrace:
▆
1. ├─base::system.time(...)
2. └─SuperLearner::CV.SuperLearner(...)
3. └─base::lapply(cvList, "[[", "cvAllSL")
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'Guide-to-SuperLearner.Rmd' failed with diagnostics:
subscript out of bounds
--- failed re-building ‘Guide-to-SuperLearner.Rmd’
SUMMARY: processing the following file failed:
‘Guide-to-SuperLearner.Rmd’
Error: Vignette re-building failed.
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 2.0-29
Check: tests
Result: ERROR
Running ‘testthat.R’ [137s/515s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> library(testthat)
> library(SuperLearner)
Loading required package: nnls
Loading required package: gam
Loading required package: splines
Loading required package: foreach
Loaded gam 1.22-6
Super Learner
Version: 2.0-29
Package created on 2024-02-06
>
> test_check("SuperLearner")
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", :
argument "y" is missing, with no default
Saving _problems/test-XGBoost-25.R
Warning: The response y is integer, bartMachine will run regression.
Warning: The response y is integer, bartMachine will run regression.
Warning: The response y is integer, bartMachine will run regression.
lasso-penalized linear regression with n=506, p=13
At minimum cross-validation error (lambda=0.0222):
-------------------------------------------------
Nonzero coefficients: 11
Cross-validation error (deviance): 23.29
R-squared: 0.72
Signal-to-noise ratio: 2.63
Scale estimate (sigma): 4.826
lasso-penalized logistic regression with n=506, p=13
At minimum cross-validation error (lambda=0.0026):
-------------------------------------------------
Nonzero coefficients: 12
Cross-validation error (deviance): 0.66
R-squared: 0.48
Signal-to-noise ratio: 0.94
Prediction error: 0.123
lasso-penalized linear regression with n=506, p=13
At minimum cross-validation error (lambda=0.0362):
-------------------------------------------------
Nonzero coefficients: 11
Cross-validation error (deviance): 23.30
R-squared: 0.72
Signal-to-noise ratio: 2.62
Scale estimate (sigma): 4.827
lasso-penalized logistic regression with n=506, p=13
At minimum cross-validation error (lambda=0.0016):
-------------------------------------------------
Nonzero coefficients: 13
Cross-validation error (deviance): 0.63
R-squared: 0.50
Signal-to-noise ratio: 0.99
Prediction error: 0.132
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.biglasso"), cvControl = list(V = 2))
Risk Coef
SL.mean_All 84.62063 0.02136708
SL.biglasso_All 26.01864 0.97863292
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.biglasso"), cvControl = list(V = 2))
Risk Coef
SL.mean_All 0.2346857 0
SL.biglasso_All 0.1039122 1
Y
0 1
53 47
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
$params$ntree
[1] 100
[1] "SL.randomForest_1" "X" "Y"
[4] "create_rf" "data"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.045984 1
$grid
mtry
1 1
2 4
3 20
$names
[1] "SL.randomForest_1" "SL.randomForest_2" "SL.randomForest_3"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.06729890 0.93195369
SL.randomForest_2_All 0.07219426 0.00000000
SL.randomForest_3_All 0.07243423 0.06804631
$grid
alpha
1 0.00
2 0.25
3 0.50
4 0.75
5 1.00
$names
[1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"
[5] "SL.glmnet_1"
$base_learner
[1] "SL.glmnet"
$params
list()
[1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75"
[5] "SL.glmnet_1"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = ls(learners),
cvControl = list(V = 2), env = learners)
Risk Coef
SL.glmnet_0_All 0.08849610 0
SL.glmnet_0.25_All 0.08116755 0
SL.glmnet_0.5_All 0.06977106 1
SL.glmnet_0.75_All 0.07686953 0
SL.glmnet_1_All 0.07730595 0
Call:
SuperLearner(Y = Y, X = X_clean, family = binomial(), SL.library = c("SL.mean",
svm$names), cvControl = list(V = 3))
Risk Coef
SL.mean_All 0.25711218 0.0000000
SL.svm_polynomial_All 0.08463484 0.1443046
SL.svm_radial_All 0.06530910 0.0000000
SL.svm_sigmoid_All 0.05716227 0.8556954
Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Degrees of Freedom: 505 Total (i.e. Null); 492 Residual
Null Deviance: 42720
Residual Deviance: 11080 AIC: 3028
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 22.51785)
Null deviance: 42716 on 505 degrees of freedom
Residual deviance: 11079 on 492 degrees of freedom
AIC: 3027.6
Number of Fisher Scoring iterations: 2
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.724 0.006446 **
crim -0.040649 0.049796 -0.816 0.414321
zn 0.012134 0.010678 1.136 0.255786
indus -0.040715 0.045615 -0.893 0.372078
chas 0.248209 0.653283 0.380 0.703989
nox -3.601085 2.924365 -1.231 0.218170
rm 1.155157 0.374843 3.082 0.002058 **
age -0.018660 0.009319 -2.002 0.045252 *
dis -0.518934 0.146286 -3.547 0.000389 ***
rad 0.255522 0.061391 4.162 3.15e-05 ***
tax -0.009500 0.003107 -3.057 0.002233 **
ptratio -0.409317 0.103191 -3.967 7.29e-05 ***
black -0.001451 0.002558 -0.567 0.570418
lstat -0.318436 0.054735 -5.818 5.96e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 669.76 on 505 degrees of freedom
Residual deviance: 296.39 on 492 degrees of freedom
AIC: 324.39
Number of Fisher Scoring iterations: 7
[1] "coefficients" "residuals" "fitted.values"
[4] "effects" "R" "rank"
[7] "qr" "family" "linear.predictors"
[10] "deviance" "aic" "null.deviance"
[13] "iter" "weights" "prior.weights"
[16] "df.residual" "df.null" "y"
[19] "converged" "boundary" "call"
[22] "formula" "terms" "data"
[25] "offset" "control" "method"
[28] "contrasts" "xlevels"
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 22.51785)
Null deviance: 42716 on 505 degrees of freedom
Residual deviance: 11079 on 492 degrees of freedom
AIC: 3027.6
Number of Fisher Scoring iterations: 2
Call:
glm(formula = Y ~ ., family = family, data = X, weights = obsWeights,
model = model)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.724 0.006446 **
crim -0.040649 0.049796 -0.816 0.414321
zn 0.012134 0.010678 1.136 0.255786
indus -0.040715 0.045615 -0.893 0.372078
chas 0.248209 0.653283 0.380 0.703989
nox -3.601085 2.924365 -1.231 0.218170
rm 1.155157 0.374843 3.082 0.002058 **
age -0.018660 0.009319 -2.002 0.045252 *
dis -0.518934 0.146286 -3.547 0.000389 ***
rad 0.255522 0.061391 4.162 3.15e-05 ***
tax -0.009500 0.003107 -3.057 0.002233 **
ptratio -0.409317 0.103191 -3.967 7.29e-05 ***
black -0.001451 0.002558 -0.567 0.570418
lstat -0.318436 0.054735 -5.818 5.96e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 669.76 on 505 degrees of freedom
Residual deviance: 296.39 on 492 degrees of freedom
AIC: 324.39
Number of Fisher Scoring iterations: 7
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.glm"))
Risk Coef
SL.mean_All 84.74142 0.0134192
SL.glm_All 23.62549 0.9865808
V1
Min. :-3.921
1st Qu.:17.514
Median :22.124
Mean :22.533
3rd Qu.:27.345
Max. :44.376
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.glm"))
Risk Coef
SL.mean_All 0.23580362 0.01315872
SL.glm_All 0.09519266 0.98684128
V1
Min. :0.004942
1st Qu.:0.035424
Median :0.196222
Mean :0.375494
3rd Qu.:0.781687
Max. :0.991313
Got an error, as expected.
<simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>
Got an error, as expected.
<simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8>
Call:
lda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Coefficients of linear discriminants:
LD1
crim 0.0012515925
zn 0.0095179029
indus -0.0166376334
chas 0.1399207112
nox -2.9934367740
rm 0.5612713068
age -0.0128420045
dis -0.3095403096
rad 0.0695027989
tax -0.0027771271
ptratio -0.2059853828
black 0.0006058031
lstat -0.0816668897
Call:
lda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Coefficients of linear discriminants:
LD1
crim 0.0012515925
zn 0.0095179029
indus -0.0166376334
chas 0.1399207112
nox -2.9934367740
rm 0.5612713068
age -0.0128420045
dis -0.3095403096
rad 0.0695027989
tax -0.0027771271
ptratio -0.2059853828
black 0.0006058031
lstat -0.0816668897
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-0.80469 -0.23612 -0.03105 0.23080 1.05224
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***
crim 0.0003028 0.0023585 0.128 0.897888
zn 0.0023028 0.0009851 2.338 0.019808 *
indus -0.0040254 0.0044131 -0.912 0.362135
chas 0.0338534 0.0618295 0.548 0.584264
nox -0.7242540 0.2741160 -2.642 0.008501 **
rm 0.1357981 0.0299915 4.528 7.48e-06 ***
age -0.0031071 0.0009480 -3.278 0.001121 **
dis -0.0748924 0.0143135 -5.232 2.48e-07 ***
rad 0.0168160 0.0047612 3.532 0.000451 ***
tax -0.0006719 0.0002699 -2.490 0.013110 *
ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***
black 0.0001466 0.0001928 0.760 0.447370
lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3405 on 492 degrees of freedom
Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065
F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16
[1] "coefficients" "residuals" "fitted.values" "effects"
[5] "weights" "rank" "assign" "qr"
[9] "df.residual" "xlevels" "call" "terms"
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
Call:
stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model)
Residuals:
Min 1Q Median 3Q Max
-0.80469 -0.23612 -0.03105 0.23080 1.05224
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6675402 0.3662392 4.553 6.67e-06 ***
crim 0.0003028 0.0023585 0.128 0.897888
zn 0.0023028 0.0009851 2.338 0.019808 *
indus -0.0040254 0.0044131 -0.912 0.362135
chas 0.0338534 0.0618295 0.548 0.584264
nox -0.7242540 0.2741160 -2.642 0.008501 **
rm 0.1357981 0.0299915 4.528 7.48e-06 ***
age -0.0031071 0.0009480 -3.278 0.001121 **
dis -0.0748924 0.0143135 -5.232 2.48e-07 ***
rad 0.0168160 0.0047612 3.532 0.000451 ***
tax -0.0006719 0.0002699 -2.490 0.013110 *
ptratio -0.0498376 0.0093885 -5.308 1.68e-07 ***
black 0.0001466 0.0001928 0.760 0.447370
lstat -0.0197591 0.0036395 -5.429 8.91e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3405 on 492 degrees of freedom
Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065
F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16
Call:
SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean",
"SL.lm"))
Risk Coef
SL.mean_All 84.6696 0.02186479
SL.lm_All 24.3340 0.97813521
V1
Min. :-3.695
1st Qu.:17.557
Median :22.128
Mean :22.533
3rd Qu.:27.303
Max. :44.189
Call:
SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean",
"SL.lm"))
Risk Coef
SL.mean_All 0.2349366 0
SL.lm_All 0.1125027 1
V1
Min. :0.0000
1st Qu.:0.1281
Median :0.3530
Mean :0.3899
3rd Qu.:0.6091
Max. :1.0000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNLS", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.1986827 0.31226655
SL.glmnet_All 0.1803963 0.66105261
SL.mean_All 0.2534500 0.02668084
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.NNLS", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.1921176 0.08939677
SL.glmnet_All 0.1635548 0.91060323
SL.mean_All 0.2504500 0.00000000
SL.bad_algorithm_All NA 0.00000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNLS2", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2279346 0.05397859
SL.glmnet_All 0.1670620 0.94602141
SL.mean_All 0.2504500 0.00000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.NNloglik", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.5804469 0.1760951
SL.glmnet_All 0.5010294 0.8239049
SL.mean_All 0.6964542 0.0000000
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.NNloglik", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All Inf 0.1338597
SL.glmnet_All 0.5027498 0.8661403
SL.mean_All 0.7000679 0.0000000
SL.bad_algorithm_All NA 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.CC_LS", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2033781 0.16438434
SL.glmnet_All 0.1740498 0.82391928
SL.mean_All 0.2516500 0.01169638
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.CC_nloglik", verbose = F, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 295.8455 0.1014591
SL.glmnet_All 205.3289 0.7867610
SL.mean_All 277.1389 0.1117798
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.CC_nloglik", verbose = T, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 212.5569 0.2707202
SL.glmnet_All 193.9384 0.7292798
SL.mean_All 277.1389 0.0000000
SL.bad_algorithm_All NA 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library,
method = "method.AUC", verbose = FALSE, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2533780 0.3333333
SL.glmnet_All 0.1869683 0.3333333
SL.mean_All 0.5550495 0.3333333
Error in (function (Y, X, newX, ...) : bad algorithm
Error in (function (Y, X, newX, ...) : bad algorithm
Removing failed learners: SL.bad_algorithm_All
Error in (function (Y, X, newX, ...) : bad algorithm
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library,
"SL.bad_algorithm"), method = "method.AUC", verbose = TRUE, cvControl = list(V = 2))
Risk Coef
SL.rpart_All 0.2467721 0.2982123
SL.glmnet_All 0.1705535 0.3508938
SL.mean_All 0.5150135 0.3508938
SL.bad_algorithm_All NA 0.0000000
Call:
qda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Call:
qda(X, grouping = Y, prior = prior, method = method, tol = tol,
CV = CV, nu = nu)
Prior probabilities of groups:
0 1
0.6245059 0.3754941
Group means:
crim zn indus chas nox rm age dis
0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307
1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371
rad tax ptratio black lstat
0 11.588608 459.9209 19.19968 340.6392 16.042468
1 6.157895 322.2789 17.21789 383.3425 7.015947
Y
0 1
62 38
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = sl_lib, cvControl = list(V = 2))
Risk Coef
SL.randomForest_All 0.0384594 0.98145221
SL.mean_All 0.2356000 0.01854779
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_All 0.05215472 1
SL.randomForest_1 <- function(...) SL.randomForest(...)
$grid
NULL
$names
[1] "SL.randomForest_1"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1"
[1] 1
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.04151372 1
$grid
mtry
1 1
2 2
$names
[1] "SL.randomForest_1" "SL.randomForest_2"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1" "SL.randomForest_2"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.05852161 0.8484752
SL.randomForest_2_All 0.05319324 0.1515248
$grid
mtry
1 1
2 2
$names
[1] "SL.randomForest_1" "SL.randomForest_2"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1" "SL.randomForest_2"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_All 0.04540374 0.2120815
SL.randomForest_2_All 0.03931360 0.7879185
$grid
mtry nodesize maxnodes
1 1 NULL NULL
2 2 NULL NULL
$names
[1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"
$base_learner
[1] "SL.randomForest"
$params
list()
[1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL"
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_NULL_NULL_All 0.05083433 0.2589592
SL.randomForest_2_NULL_NULL_All 0.04697238 0.7410408
$grid
mtry maxnodes
1 1 5
2 2 5
3 1 10
4 2 10
5 1 NULL
6 2 NULL
$names
[1] "SL.randomForest_1_5" "SL.randomForest_2_5" "SL.randomForest_1_10"
[4] "SL.randomForest_2_10" "SL.randomForest_1_NULL" "SL.randomForest_2_NULL"
$base_learner
[1] "SL.randomForest"
$params
list()
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2), env = sl_env)
Risk Coef
SL.randomForest_1_5_All 0.04597977 0.0000000
SL.randomForest_2_5_All 0.03951320 0.0000000
SL.randomForest_1_10_All 0.04337471 0.1117946
SL.randomForest_2_10_All 0.03898477 0.8882054
SL.randomForest_1_NULL_All 0.04395171 0.0000000
SL.randomForest_2_NULL_All 0.03928269 0.0000000
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_5_All 0.05330062 0.4579034
SL.randomForest_2_5_All 0.05189278 0.0000000
SL.randomForest_1_10_All 0.05263432 0.1614643
SL.randomForest_2_10_All 0.05058144 0.0000000
SL.randomForest_1_NULL_All 0.05415397 0.0000000
SL.randomForest_2_NULL_All 0.05036643 0.3806323
Call:
SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names,
cvControl = list(V = 2))
Risk Coef
SL.randomForest_1_5_All 0.05978213 0
SL.randomForest_2_5_All 0.05628852 0
SL.randomForest_1_10_All 0.05751494 0
SL.randomForest_2_10_All 0.05889935 0
SL.randomForest_1_NULL_All 0.05629605 1
SL.randomForest_2_NULL_All 0.05807645 0
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Regression
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 10.57547
R squared (OOB): 0.8749748
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Probability estimation
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.08262419
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Regression
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 5
Variable importance mode: none
Splitrule: variance
OOB prediction error (MSE): 10.46443
R squared (OOB): 0.8762876
Ranger result
Call:
ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose)
Type: Probability estimation
Number of trees: 500
Sample size: 506
Number of independent variables: 13
Mtry: 3
Target node size: 1
Variable importance mode: none
Splitrule: gini
OOB prediction error (Brier s.): 0.08395011
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***
crim -1.080e-01 0.032865 -3.2865 1.087e-03 **
zn 4.642e-02 0.013727 3.3816 7.781e-04 ***
indus 2.056e-02 0.061496 0.3343 7.383e-01
chas 2.687e+00 0.861580 3.1184 1.925e-03 **
nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***
rm 3.810e+00 0.417925 9.1161 1.979e-18 ***
age 6.922e-04 0.013210 0.0524 9.582e-01
dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***
rad 3.060e-01 0.066346 4.6129 5.071e-06 ***
tax -1.233e-02 0.003761 -3.2800 1.112e-03 **
ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***
black 9.312e-03 0.002686 3.4668 5.729e-04 ***
lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 42716.3;
residuals df: 492; residuals deviance: 11078.78;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 3027.609; log Likelihood: -1498.804;
RSS: 11078.8; dispersion: 22.51785; iterations: 1;
rank: 14; max tolerance: 1e+00; convergence: FALSE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.7242 6.446e-03 **
crim -0.040649 0.049796 -0.8163 4.143e-01
zn 0.012134 0.010678 1.1364 2.558e-01
indus -0.040715 0.045615 -0.8926 3.721e-01
chas 0.248209 0.653283 0.3799 7.040e-01
nox -3.601085 2.924365 -1.2314 2.182e-01
rm 1.155157 0.374843 3.0817 2.058e-03 **
age -0.018660 0.009319 -2.0023 4.525e-02 *
dis -0.518934 0.146286 -3.5474 3.891e-04 ***
rad 0.255522 0.061391 4.1622 3.152e-05 ***
tax -0.009500 0.003107 -3.0574 2.233e-03 **
ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***
black -0.001451 0.002558 -0.5674 5.704e-01
lstat -0.318436 0.054735 -5.8178 5.964e-09 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 669.76;
residuals df: 492; residuals deviance: 296.39;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 324.3944; log Likelihood: -148.1972;
RSS: 1107.5; dispersion: 1; iterations: 7;
rank: 14; max tolerance: 7.55e-12; convergence: TRUE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 ***
crim -1.080e-01 0.032865 -3.2865 1.087e-03 **
zn 4.642e-02 0.013727 3.3816 7.781e-04 ***
indus 2.056e-02 0.061496 0.3343 7.383e-01
chas 2.687e+00 0.861580 3.1184 1.925e-03 **
nox -1.777e+01 3.819744 -4.6513 4.246e-06 ***
rm 3.810e+00 0.417925 9.1161 1.979e-18 ***
age 6.922e-04 0.013210 0.0524 9.582e-01
dis -1.476e+00 0.199455 -7.3980 6.013e-13 ***
rad 3.060e-01 0.066346 4.6129 5.071e-06 ***
tax -1.233e-02 0.003761 -3.2800 1.112e-03 **
ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 ***
black 9.312e-03 0.002686 3.4668 5.729e-04 ***
lstat -5.248e-01 0.050715 -10.3471 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 42716.3;
residuals df: 492; residuals deviance: 11078.78;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 3027.609; log Likelihood: -1498.804;
RSS: 11078.8; dispersion: 22.51785; iterations: 1;
rank: 14; max tolerance: 1e+00; convergence: FALSE.
Generalized Linear Model of class 'speedglm':
Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k)
Coefficients:
------------------------------------------------------------------
Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.682635 3.921395 2.7242 6.446e-03 **
crim -0.040649 0.049796 -0.8163 4.143e-01
zn 0.012134 0.010678 1.1364 2.558e-01
indus -0.040715 0.045615 -0.8926 3.721e-01
chas 0.248209 0.653283 0.3799 7.040e-01
nox -3.601085 2.924365 -1.2314 2.182e-01
rm 1.155157 0.374843 3.0817 2.058e-03 **
age -0.018660 0.009319 -2.0023 4.525e-02 *
dis -0.518934 0.146286 -3.5474 3.891e-04 ***
rad 0.255522 0.061391 4.1622 3.152e-05 ***
tax -0.009500 0.003107 -3.0574 2.233e-03 **
ptratio -0.409317 0.103191 -3.9666 7.291e-05 ***
black -0.001451 0.002558 -0.5674 5.704e-01
lstat -0.318436 0.054735 -5.8178 5.964e-09 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
null df: 505; null deviance: 669.76;
residuals df: 492; residuals deviance: 296.39;
# obs.: 506; # non-zero weighted obs.: 506;
AIC: 324.3944; log Likelihood: -148.1972;
RSS: 1107.5; dispersion: 1; iterations: 7;
rank: 14; max tolerance: 7.55e-12; convergence: TRUE.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
(Intercept) crim zn indus chas nox
3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01
rm age dis rad tax ptratio
3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01
black lstat
9.312e-03 -5.248e-01
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 36.459488 5.103459 7.144 3.283e-12 ***
crim -0.108011 0.032865 -3.287 1.087e-03 **
zn 0.046420 0.013727 3.382 7.781e-04 ***
indus 0.020559 0.061496 0.334 7.383e-01
chas 2.686734 0.861580 3.118 1.925e-03 **
nox -17.766611 3.819744 -4.651 4.246e-06 ***
rm 3.809865 0.417925 9.116 1.979e-18 ***
age 0.000692 0.013210 0.052 9.582e-01
dis -1.475567 0.199455 -7.398 6.013e-13 ***
rad 0.306049 0.066346 4.613 5.071e-06 ***
tax -0.012335 0.003761 -3.280 1.112e-03 **
ptratio -0.952747 0.130827 -7.283 1.309e-12 ***
black 0.009312 0.002686 3.467 5.729e-04 ***
lstat -0.524758 0.050715 -10.347 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 4.745298 on 492 degrees of freedom;
observations: 506; R^2: 0.741; adjusted R^2: 0.734;
F-statistic: 108.1 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 1.667540 0.366239 4.553 6.670e-06 ***
crim 0.000303 0.002358 0.128 8.979e-01
zn 0.002303 0.000985 2.338 1.981e-02 *
indus -0.004025 0.004413 -0.912 3.621e-01
chas 0.033853 0.061829 0.548 5.843e-01
nox -0.724254 0.274116 -2.642 8.501e-03 **
rm 0.135798 0.029992 4.528 7.483e-06 ***
age -0.003107 0.000948 -3.278 1.121e-03 **
dis -0.074892 0.014313 -5.232 2.482e-07 ***
rad 0.016816 0.004761 3.532 4.515e-04 ***
tax -0.000672 0.000270 -2.490 1.311e-02 *
ptratio -0.049838 0.009389 -5.308 1.677e-07 ***
black 0.000147 0.000193 0.760 4.474e-01
lstat -0.019759 0.003639 -5.429 8.912e-08 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 0.340537 on 492 degrees of freedom;
observations: 506; R^2: 0.519; adjusted R^2: 0.506;
F-statistic: 40.86 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 36.459488 5.103459 7.144 3.283e-12 ***
crim -0.108011 0.032865 -3.287 1.087e-03 **
zn 0.046420 0.013727 3.382 7.781e-04 ***
indus 0.020559 0.061496 0.334 7.383e-01
chas 2.686734 0.861580 3.118 1.925e-03 **
nox -17.766611 3.819744 -4.651 4.246e-06 ***
rm 3.809865 0.417925 9.116 1.979e-18 ***
age 0.000692 0.013210 0.052 9.582e-01
dis -1.475567 0.199455 -7.398 6.013e-13 ***
rad 0.306049 0.066346 4.613 5.071e-06 ***
tax -0.012335 0.003761 -3.280 1.112e-03 **
ptratio -0.952747 0.130827 -7.283 1.309e-12 ***
black 0.009312 0.002686 3.467 5.729e-04 ***
lstat -0.524758 0.050715 -10.347 7.777e-23 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 4.745298 on 492 degrees of freedom;
observations: 506; R^2: 0.741; adjusted R^2: 0.734;
F-statistic: 108.1 on 13 and 492 df; p-value: 0.
Linear Regression Model of class 'speedlm':
Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights)
Coefficients:
------------------------------------------------------------------
coef se t p.value
(Intercept) 1.667540 0.366239 4.553 6.670e-06 ***
crim 0.000303 0.002358 0.128 8.979e-01
zn 0.002303 0.000985 2.338 1.981e-02 *
indus -0.004025 0.004413 -0.912 3.621e-01
chas 0.033853 0.061829 0.548 5.843e-01
nox -0.724254 0.274116 -2.642 8.501e-03 **
rm 0.135798 0.029992 4.528 7.483e-06 ***
age -0.003107 0.000948 -3.278 1.121e-03 **
dis -0.074892 0.014313 -5.232 2.482e-07 ***
rad 0.016816 0.004761 3.532 4.515e-04 ***
tax -0.000672 0.000270 -2.490 1.311e-02 *
ptratio -0.049838 0.009389 -5.308 1.677e-07 ***
black 0.000147 0.000193 0.760 4.474e-01
lstat -0.019759 0.003639 -5.429 8.912e-08 ***
-------------------------------------------------------------------
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Residual standard error: 0.340537 on 492 degrees of freedom;
observations: 506; R^2: 0.519; adjusted R^2: 0.506;
F-statistic: 40.86 on 13 and 492 df; p-value: 0.
[ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]
══ Skipped tests (9) ═══════════════════════════════════════════════════════════
• empty test (9): , , , , , , , ,
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-XGBoost.R:25:1'): (code run outside of `test_that()`) ──────────
Error in `UseMethod("predict")`: no applicable method for 'predict' applied to an object of class "NULL"
Backtrace:
▆
1. ├─stats::predict(sl, X) at test-XGBoost.R:25:1
2. └─SuperLearner::predict.SuperLearner(sl, X)
3. ├─base::do.call(...)
4. └─stats::predict(...)
[ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.