CRAN Package Check Results for Maintainer ‘Eric Polley <epolley at uchicago.edu>’

Last updated on 2025-12-04 07:51:38 CET.

Package ERROR OK
SuperLearner 2 11

Package SuperLearner

Current CRAN status: ERROR: 2, OK: 11

Version: 2.0-29
Check: tests
Result: ERROR Running ‘testthat.R’ [139s/326s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(SuperLearner) Loading required package: nnls Loading required package: gam Loading required package: splines Loading required package: foreach Loaded gam 1.22-6 Super Learner Version: 2.0-29 Package created on 2024-02-06 > > test_check("SuperLearner") Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Saving _problems/test-XGBoost-25.R Warning: The response y is integer, bartMachine will run regression. Warning: The response y is integer, bartMachine will run regression. Warning: The response y is integer, bartMachine will run regression. lasso-penalized linear regression with n=506, p=13 At minimum cross-validation error (lambda=0.0222): ------------------------------------------------- Nonzero coefficients: 11 Cross-validation error (deviance): 23.29 R-squared: 0.72 Signal-to-noise ratio: 2.63 Scale estimate (sigma): 4.826 lasso-penalized logistic regression with n=506, p=13 At minimum cross-validation error (lambda=0.0026): ------------------------------------------------- Nonzero coefficients: 12 Cross-validation error (deviance): 0.66 R-squared: 0.48 Signal-to-noise ratio: 0.94 Prediction error: 0.123 lasso-penalized linear regression with n=506, p=13 At minimum cross-validation error (lambda=0.0362): ------------------------------------------------- Nonzero coefficients: 11 Cross-validation error (deviance): 23.30 R-squared: 0.72 Signal-to-noise ratio: 2.62 Scale estimate (sigma): 4.827 lasso-penalized logistic regression with n=506, p=13 At minimum cross-validation error (lambda=0.0016): ------------------------------------------------- Nonzero coefficients: 13 Cross-validation error (deviance): 0.63 R-squared: 0.50 Signal-to-noise ratio: 0.99 Prediction error: 0.132 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.biglasso"), cvControl = list(V = 2)) Risk Coef SL.mean_All 84.62063 0.02136708 SL.biglasso_All 26.01864 0.97863292 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.biglasso"), cvControl = list(V = 2)) Risk Coef SL.mean_All 0.2346857 0 SL.biglasso_All 0.1039122 1 Y 0 1 53 47 $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params $params$ntree [1] 100 [1] "SL.randomForest_1" "X" "Y" [4] "create_rf" "data" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.045984 1 $grid mtry 1 1 2 4 3 20 $names [1] "SL.randomForest_1" "SL.randomForest_2" "SL.randomForest_3" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.06729890 0.93195369 SL.randomForest_2_All 0.07219426 0.00000000 SL.randomForest_3_All 0.07243423 0.06804631 $grid alpha 1 0.00 2 0.25 3 0.50 4 0.75 5 1.00 $names [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75" [5] "SL.glmnet_1" $base_learner [1] "SL.glmnet" $params list() [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75" [5] "SL.glmnet_1" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = ls(learners), cvControl = list(V = 2), env = learners) Risk Coef SL.glmnet_0_All 0.08849610 0 SL.glmnet_0.25_All 0.08116755 0 SL.glmnet_0.5_All 0.06977106 1 SL.glmnet_0.75_All 0.07686953 0 SL.glmnet_1_All 0.07730595 0 Call: SuperLearner(Y = Y, X = X_clean, family = binomial(), SL.library = c("SL.mean", svm$names), cvControl = list(V = 3)) Risk Coef SL.mean_All 0.25711218 0.0000000 SL.svm_polynomial_All 0.08463484 0.1443046 SL.svm_radial_All 0.06530910 0.0000000 SL.svm_sigmoid_All 0.05716227 0.8556954 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Degrees of Freedom: 505 Total (i.e. Null); 492 Residual Null Deviance: 42720 Residual Deviance: 11080 AIC: 3028 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 22.51785) Null deviance: 42716 on 505 degrees of freedom Residual deviance: 11079 on 492 degrees of freedom AIC: 3027.6 Number of Fisher Scoring iterations: 2 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.724 0.006446 ** crim -0.040649 0.049796 -0.816 0.414321 zn 0.012134 0.010678 1.136 0.255786 indus -0.040715 0.045615 -0.893 0.372078 chas 0.248209 0.653283 0.380 0.703989 nox -3.601085 2.924365 -1.231 0.218170 rm 1.155157 0.374843 3.082 0.002058 ** age -0.018660 0.009319 -2.002 0.045252 * dis -0.518934 0.146286 -3.547 0.000389 *** rad 0.255522 0.061391 4.162 3.15e-05 *** tax -0.009500 0.003107 -3.057 0.002233 ** ptratio -0.409317 0.103191 -3.967 7.29e-05 *** black -0.001451 0.002558 -0.567 0.570418 lstat -0.318436 0.054735 -5.818 5.96e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 669.76 on 505 degrees of freedom Residual deviance: 296.39 on 492 degrees of freedom AIC: 324.39 Number of Fisher Scoring iterations: 7 [1] "coefficients" "residuals" "fitted.values" [4] "effects" "R" "rank" [7] "qr" "family" "linear.predictors" [10] "deviance" "aic" "null.deviance" [13] "iter" "weights" "prior.weights" [16] "df.residual" "df.null" "y" [19] "converged" "boundary" "call" [22] "formula" "terms" "data" [25] "offset" "control" "method" [28] "contrasts" "xlevels" Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 22.51785) Null deviance: 42716 on 505 degrees of freedom Residual deviance: 11079 on 492 degrees of freedom AIC: 3027.6 Number of Fisher Scoring iterations: 2 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.724 0.006446 ** crim -0.040649 0.049796 -0.816 0.414321 zn 0.012134 0.010678 1.136 0.255786 indus -0.040715 0.045615 -0.893 0.372078 chas 0.248209 0.653283 0.380 0.703989 nox -3.601085 2.924365 -1.231 0.218170 rm 1.155157 0.374843 3.082 0.002058 ** age -0.018660 0.009319 -2.002 0.045252 * dis -0.518934 0.146286 -3.547 0.000389 *** rad 0.255522 0.061391 4.162 3.15e-05 *** tax -0.009500 0.003107 -3.057 0.002233 ** ptratio -0.409317 0.103191 -3.967 7.29e-05 *** black -0.001451 0.002558 -0.567 0.570418 lstat -0.318436 0.054735 -5.818 5.96e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 669.76 on 505 degrees of freedom Residual deviance: 296.39 on 492 degrees of freedom AIC: 324.39 Number of Fisher Scoring iterations: 7 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.glm")) Risk Coef SL.mean_All 84.74142 0.0134192 SL.glm_All 23.62549 0.9865808 V1 Min. :-3.921 1st Qu.:17.514 Median :22.124 Mean :22.533 3rd Qu.:27.345 Max. :44.376 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.glm")) Risk Coef SL.mean_All 0.23580362 0.01315872 SL.glm_All 0.09519266 0.98684128 V1 Min. :0.004942 1st Qu.:0.035424 Median :0.196222 Mean :0.375494 3rd Qu.:0.781687 Max. :0.991313 Got an error, as expected. <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8> Got an error, as expected. <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8> Call: lda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Coefficients of linear discriminants: LD1 crim 0.0012515925 zn 0.0095179029 indus -0.0166376334 chas 0.1399207112 nox -2.9934367740 rm 0.5612713068 age -0.0128420045 dis -0.3095403096 rad 0.0695027989 tax -0.0027771271 ptratio -0.2059853828 black 0.0006058031 lstat -0.0816668897 Call: lda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Coefficients of linear discriminants: LD1 crim 0.0012515925 zn 0.0095179029 indus -0.0166376334 chas 0.1399207112 nox -2.9934367740 rm 0.5612713068 age -0.0128420045 dis -0.3095403096 rad 0.0695027989 tax -0.0027771271 ptratio -0.2059853828 black 0.0006058031 lstat -0.0816668897 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -0.80469 -0.23612 -0.03105 0.23080 1.05224 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 *** crim 0.0003028 0.0023585 0.128 0.897888 zn 0.0023028 0.0009851 2.338 0.019808 * indus -0.0040254 0.0044131 -0.912 0.362135 chas 0.0338534 0.0618295 0.548 0.584264 nox -0.7242540 0.2741160 -2.642 0.008501 ** rm 0.1357981 0.0299915 4.528 7.48e-06 *** age -0.0031071 0.0009480 -3.278 0.001121 ** dis -0.0748924 0.0143135 -5.232 2.48e-07 *** rad 0.0168160 0.0047612 3.532 0.000451 *** tax -0.0006719 0.0002699 -2.490 0.013110 * ptratio -0.0498376 0.0093885 -5.308 1.68e-07 *** black 0.0001466 0.0001928 0.760 0.447370 lstat -0.0197591 0.0036395 -5.429 8.91e-08 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3405 on 492 degrees of freedom Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065 F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16 [1] "coefficients" "residuals" "fitted.values" "effects" [5] "weights" "rank" "assign" "qr" [9] "df.residual" "xlevels" "call" "terms" Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -0.80469 -0.23612 -0.03105 0.23080 1.05224 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 *** crim 0.0003028 0.0023585 0.128 0.897888 zn 0.0023028 0.0009851 2.338 0.019808 * indus -0.0040254 0.0044131 -0.912 0.362135 chas 0.0338534 0.0618295 0.548 0.584264 nox -0.7242540 0.2741160 -2.642 0.008501 ** rm 0.1357981 0.0299915 4.528 7.48e-06 *** age -0.0031071 0.0009480 -3.278 0.001121 ** dis -0.0748924 0.0143135 -5.232 2.48e-07 *** rad 0.0168160 0.0047612 3.532 0.000451 *** tax -0.0006719 0.0002699 -2.490 0.013110 * ptratio -0.0498376 0.0093885 -5.308 1.68e-07 *** black 0.0001466 0.0001928 0.760 0.447370 lstat -0.0197591 0.0036395 -5.429 8.91e-08 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3405 on 492 degrees of freedom Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065 F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.lm")) Risk Coef SL.mean_All 84.6696 0.02186479 SL.lm_All 24.3340 0.97813521 V1 Min. :-3.695 1st Qu.:17.557 Median :22.128 Mean :22.533 3rd Qu.:27.303 Max. :44.189 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.lm")) Risk Coef SL.mean_All 0.2349366 0 SL.lm_All 0.1125027 1 V1 Min. :0.0000 1st Qu.:0.1281 Median :0.3530 Mean :0.3899 3rd Qu.:0.6091 Max. :1.0000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNLS", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.1986827 0.31226655 SL.glmnet_All 0.1803963 0.66105261 SL.mean_All 0.2534500 0.02668084 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.NNLS", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.1921176 0.08939677 SL.glmnet_All 0.1635548 0.91060323 SL.mean_All 0.2504500 0.00000000 SL.bad_algorithm_All NA 0.00000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNLS2", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2279346 0.05397859 SL.glmnet_All 0.1670620 0.94602141 SL.mean_All 0.2504500 0.00000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNloglik", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.5804469 0.1760951 SL.glmnet_All 0.5010294 0.8239049 SL.mean_All 0.6964542 0.0000000 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.NNloglik", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All Inf 0.1338597 SL.glmnet_All 0.5027498 0.8661403 SL.mean_All 0.7000679 0.0000000 SL.bad_algorithm_All NA 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.CC_LS", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2033781 0.16438434 SL.glmnet_All 0.1740498 0.82391928 SL.mean_All 0.2516500 0.01169638 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.CC_nloglik", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 295.8455 0.1014591 SL.glmnet_All 205.3289 0.7867610 SL.mean_All 277.1389 0.1117798 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.CC_nloglik", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All 212.5569 0.2707202 SL.glmnet_All 193.9384 0.7292798 SL.mean_All 277.1389 0.0000000 SL.bad_algorithm_All NA 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.AUC", verbose = FALSE, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2533780 0.3333333 SL.glmnet_All 0.1869683 0.3333333 SL.mean_All 0.5550495 0.3333333 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Removing failed learners: SL.bad_algorithm_All Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.AUC", verbose = TRUE, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2467721 0.2982123 SL.glmnet_All 0.1705535 0.3508938 SL.mean_All 0.5150135 0.3508938 SL.bad_algorithm_All NA 0.0000000 Call: qda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Call: qda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Y 0 1 62 38 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = sl_lib, cvControl = list(V = 2)) Risk Coef SL.randomForest_All 0.0384594 0.98145221 SL.mean_All 0.2356000 0.01854779 $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.05215472 1 SL.randomForest_1 <- function(...) SL.randomForest(...) $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" [1] 1 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.04151372 1 $grid mtry 1 1 2 2 $names [1] "SL.randomForest_1" "SL.randomForest_2" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" "SL.randomForest_2" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.05852161 0.8484752 SL.randomForest_2_All 0.05319324 0.1515248 $grid mtry 1 1 2 2 $names [1] "SL.randomForest_1" "SL.randomForest_2" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" "SL.randomForest_2" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.04540374 0.2120815 SL.randomForest_2_All 0.03931360 0.7879185 $grid mtry nodesize maxnodes 1 1 NULL NULL 2 2 NULL NULL $names [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_NULL_NULL_All 0.05083433 0.2589592 SL.randomForest_2_NULL_NULL_All 0.04697238 0.7410408 $grid mtry maxnodes 1 1 5 2 2 5 3 1 10 4 2 10 5 1 NULL 6 2 NULL $names [1] "SL.randomForest_1_5" "SL.randomForest_2_5" "SL.randomForest_1_10" [4] "SL.randomForest_2_10" "SL.randomForest_1_NULL" "SL.randomForest_2_NULL" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_5_All 0.04597977 0.0000000 SL.randomForest_2_5_All 0.03951320 0.0000000 SL.randomForest_1_10_All 0.04337471 0.1117946 SL.randomForest_2_10_All 0.03898477 0.8882054 SL.randomForest_1_NULL_All 0.04395171 0.0000000 SL.randomForest_2_NULL_All 0.03928269 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_5_All 0.05330062 0.4579034 SL.randomForest_2_5_All 0.05189278 0.0000000 SL.randomForest_1_10_All 0.05263432 0.1614643 SL.randomForest_2_10_All 0.05058144 0.0000000 SL.randomForest_1_NULL_All 0.05415397 0.0000000 SL.randomForest_2_NULL_All 0.05036643 0.3806323 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_5_All 0.05978213 0 SL.randomForest_2_5_All 0.05628852 0 SL.randomForest_1_10_All 0.05751494 0 SL.randomForest_2_10_All 0.05889935 0 SL.randomForest_1_NULL_All 0.05629605 1 SL.randomForest_2_NULL_All 0.05807645 0 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Regression Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 5 Variable importance mode: none Splitrule: variance OOB prediction error (MSE): 10.39743 R squared (OOB): 0.8770796 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Probability estimation Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 1 Variable importance mode: none Splitrule: gini OOB prediction error (Brier s.): 0.08374536 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Regression Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 5 Variable importance mode: none Splitrule: variance OOB prediction error (MSE): 10.74731 R squared (OOB): 0.8729433 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Probability estimation Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 1 Variable importance mode: none Splitrule: gini OOB prediction error (Brier s.): 0.08326064 Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 *** crim -1.080e-01 0.032865 -3.2865 1.087e-03 ** zn 4.642e-02 0.013727 3.3816 7.781e-04 *** indus 2.056e-02 0.061496 0.3343 7.383e-01 chas 2.687e+00 0.861580 3.1184 1.925e-03 ** nox -1.777e+01 3.819744 -4.6513 4.246e-06 *** rm 3.810e+00 0.417925 9.1161 1.979e-18 *** age 6.922e-04 0.013210 0.0524 9.582e-01 dis -1.476e+00 0.199455 -7.3980 6.013e-13 *** rad 3.060e-01 0.066346 4.6129 5.071e-06 *** tax -1.233e-02 0.003761 -3.2800 1.112e-03 ** ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 *** black 9.312e-03 0.002686 3.4668 5.729e-04 *** lstat -5.248e-01 0.050715 -10.3471 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 42716.3; residuals df: 492; residuals deviance: 11078.78; # obs.: 506; # non-zero weighted obs.: 506; AIC: 3027.609; log Likelihood: -1498.804; RSS: 11078.8; dispersion: 22.51785; iterations: 1; rank: 14; max tolerance: 1e+00; convergence: FALSE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.7242 6.446e-03 ** crim -0.040649 0.049796 -0.8163 4.143e-01 zn 0.012134 0.010678 1.1364 2.558e-01 indus -0.040715 0.045615 -0.8926 3.721e-01 chas 0.248209 0.653283 0.3799 7.040e-01 nox -3.601085 2.924365 -1.2314 2.182e-01 rm 1.155157 0.374843 3.0817 2.058e-03 ** age -0.018660 0.009319 -2.0023 4.525e-02 * dis -0.518934 0.146286 -3.5474 3.891e-04 *** rad 0.255522 0.061391 4.1622 3.152e-05 *** tax -0.009500 0.003107 -3.0574 2.233e-03 ** ptratio -0.409317 0.103191 -3.9666 7.291e-05 *** black -0.001451 0.002558 -0.5674 5.704e-01 lstat -0.318436 0.054735 -5.8178 5.964e-09 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 669.76; residuals df: 492; residuals deviance: 296.39; # obs.: 506; # non-zero weighted obs.: 506; AIC: 324.3944; log Likelihood: -148.1972; RSS: 1107.5; dispersion: 1; iterations: 7; rank: 14; max tolerance: 7.55e-12; convergence: TRUE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 *** crim -1.080e-01 0.032865 -3.2865 1.087e-03 ** zn 4.642e-02 0.013727 3.3816 7.781e-04 *** indus 2.056e-02 0.061496 0.3343 7.383e-01 chas 2.687e+00 0.861580 3.1184 1.925e-03 ** nox -1.777e+01 3.819744 -4.6513 4.246e-06 *** rm 3.810e+00 0.417925 9.1161 1.979e-18 *** age 6.922e-04 0.013210 0.0524 9.582e-01 dis -1.476e+00 0.199455 -7.3980 6.013e-13 *** rad 3.060e-01 0.066346 4.6129 5.071e-06 *** tax -1.233e-02 0.003761 -3.2800 1.112e-03 ** ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 *** black 9.312e-03 0.002686 3.4668 5.729e-04 *** lstat -5.248e-01 0.050715 -10.3471 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 42716.3; residuals df: 492; residuals deviance: 11078.78; # obs.: 506; # non-zero weighted obs.: 506; AIC: 3027.609; log Likelihood: -1498.804; RSS: 11078.8; dispersion: 22.51785; iterations: 1; rank: 14; max tolerance: 1e+00; convergence: FALSE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.7242 6.446e-03 ** crim -0.040649 0.049796 -0.8163 4.143e-01 zn 0.012134 0.010678 1.1364 2.558e-01 indus -0.040715 0.045615 -0.8926 3.721e-01 chas 0.248209 0.653283 0.3799 7.040e-01 nox -3.601085 2.924365 -1.2314 2.182e-01 rm 1.155157 0.374843 3.0817 2.058e-03 ** age -0.018660 0.009319 -2.0023 4.525e-02 * dis -0.518934 0.146286 -3.5474 3.891e-04 *** rad 0.255522 0.061391 4.1622 3.152e-05 *** tax -0.009500 0.003107 -3.0574 2.233e-03 ** ptratio -0.409317 0.103191 -3.9666 7.291e-05 *** black -0.001451 0.002558 -0.5674 5.704e-01 lstat -0.318436 0.054735 -5.8178 5.964e-09 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 669.76; residuals df: 492; residuals deviance: 296.39; # obs.: 506; # non-zero weighted obs.: 506; AIC: 324.3944; log Likelihood: -148.1972; RSS: 1107.5; dispersion: 1; iterations: 7; rank: 14; max tolerance: 7.55e-12; convergence: TRUE. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 36.459488 5.103459 7.144 3.283e-12 *** crim -0.108011 0.032865 -3.287 1.087e-03 ** zn 0.046420 0.013727 3.382 7.781e-04 *** indus 0.020559 0.061496 0.334 7.383e-01 chas 2.686734 0.861580 3.118 1.925e-03 ** nox -17.766611 3.819744 -4.651 4.246e-06 *** rm 3.809865 0.417925 9.116 1.979e-18 *** age 0.000692 0.013210 0.052 9.582e-01 dis -1.475567 0.199455 -7.398 6.013e-13 *** rad 0.306049 0.066346 4.613 5.071e-06 *** tax -0.012335 0.003761 -3.280 1.112e-03 ** ptratio -0.952747 0.130827 -7.283 1.309e-12 *** black 0.009312 0.002686 3.467 5.729e-04 *** lstat -0.524758 0.050715 -10.347 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 4.745298 on 492 degrees of freedom; observations: 506; R^2: 0.741; adjusted R^2: 0.734; F-statistic: 108.1 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 1.667540 0.366239 4.553 6.670e-06 *** crim 0.000303 0.002358 0.128 8.979e-01 zn 0.002303 0.000985 2.338 1.981e-02 * indus -0.004025 0.004413 -0.912 3.621e-01 chas 0.033853 0.061829 0.548 5.843e-01 nox -0.724254 0.274116 -2.642 8.501e-03 ** rm 0.135798 0.029992 4.528 7.483e-06 *** age -0.003107 0.000948 -3.278 1.121e-03 ** dis -0.074892 0.014313 -5.232 2.482e-07 *** rad 0.016816 0.004761 3.532 4.515e-04 *** tax -0.000672 0.000270 -2.490 1.311e-02 * ptratio -0.049838 0.009389 -5.308 1.677e-07 *** black 0.000147 0.000193 0.760 4.474e-01 lstat -0.019759 0.003639 -5.429 8.912e-08 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 0.340537 on 492 degrees of freedom; observations: 506; R^2: 0.519; adjusted R^2: 0.506; F-statistic: 40.86 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 36.459488 5.103459 7.144 3.283e-12 *** crim -0.108011 0.032865 -3.287 1.087e-03 ** zn 0.046420 0.013727 3.382 7.781e-04 *** indus 0.020559 0.061496 0.334 7.383e-01 chas 2.686734 0.861580 3.118 1.925e-03 ** nox -17.766611 3.819744 -4.651 4.246e-06 *** rm 3.809865 0.417925 9.116 1.979e-18 *** age 0.000692 0.013210 0.052 9.582e-01 dis -1.475567 0.199455 -7.398 6.013e-13 *** rad 0.306049 0.066346 4.613 5.071e-06 *** tax -0.012335 0.003761 -3.280 1.112e-03 ** ptratio -0.952747 0.130827 -7.283 1.309e-12 *** black 0.009312 0.002686 3.467 5.729e-04 *** lstat -0.524758 0.050715 -10.347 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 4.745298 on 492 degrees of freedom; observations: 506; R^2: 0.741; adjusted R^2: 0.734; F-statistic: 108.1 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 1.667540 0.366239 4.553 6.670e-06 *** crim 0.000303 0.002358 0.128 8.979e-01 zn 0.002303 0.000985 2.338 1.981e-02 * indus -0.004025 0.004413 -0.912 3.621e-01 chas 0.033853 0.061829 0.548 5.843e-01 nox -0.724254 0.274116 -2.642 8.501e-03 ** rm 0.135798 0.029992 4.528 7.483e-06 *** age -0.003107 0.000948 -3.278 1.121e-03 ** dis -0.074892 0.014313 -5.232 2.482e-07 *** rad 0.016816 0.004761 3.532 4.515e-04 *** tax -0.000672 0.000270 -2.490 1.311e-02 * ptratio -0.049838 0.009389 -5.308 1.677e-07 *** black 0.000147 0.000193 0.760 4.474e-01 lstat -0.019759 0.003639 -5.429 8.912e-08 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 0.340537 on 492 degrees of freedom; observations: 506; R^2: 0.519; adjusted R^2: 0.506; F-statistic: 40.86 on 13 and 492 df; p-value: 0. [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ] ══ Skipped tests (9) ═══════════════════════════════════════════════════════════ • empty test (9): , , , , , , , , ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-XGBoost.R:25:1'): (code run outside of `test_that()`) ────────── Error in `UseMethod("predict")`: no applicable method for 'predict' applied to an object of class "NULL" Backtrace: ▆ 1. ├─stats::predict(sl, X) at test-XGBoost.R:25:1 2. └─SuperLearner::predict.SuperLearner(sl, X) 3. ├─base::do.call(...) 4. └─stats::predict(...) [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 2.0-29
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘Guide-to-SuperLearner.Rmd’ using rmarkdown Boston package:MASS R Documentation _<08>H_<08>o_<08>u_<08>s_<08>i_<08>n_<08>g _<08>V_<08>a_<08>l_<08>u_<08>e_<08>s _<08>i_<08>n _<08>S_<08>u_<08>b_<08>u_<08>r_<08>b_<08>s _<08>o_<08>f _<08>B_<08>o_<08>s_<08>t_<08>o_<08>n _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: The 'Boston' data frame has 506 rows and 14 columns. _<08>U_<08>s_<08>a_<08>g_<08>e: Boston _<08>F_<08>o_<08>r_<08>m_<08>a_<08>t: This data frame contains the following columns: 'crim' per capita crime rate by town. 'zn' proportion of residential land zoned for lots over 25,000 sq.ft. 'indus' proportion of non-retail business acres per town. 'chas' Charles River dummy variable (= 1 if tract bounds river; 0 otherwise). 'nox' nitrogen oxides concentration (parts per 10 million). 'rm' average number of rooms per dwelling. 'age' proportion of owner-occupied units built prior to 1940. 'dis' weighted mean of distances to five Boston employment centres. 'rad' index of accessibility to radial highways. 'tax' full-value property-tax rate per $10,000. 'ptratio' pupil-teacher ratio by town. 'black' 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town. 'lstat' lower status of the population (percent). 'medv' median value of owner-occupied homes in $1000s. _<08>S_<08>o_<08>u_<08>r_<08>c_<08>e: Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. _J. Environ. Economics and Management_ *5*, 81-102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) _Regression Diagnostics. Identifying Influential Data and Sources of Collinearity._ New York: Wiley. Quitting from Guide-to-SuperLearner.Rmd:557-590 [xgboost] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `FUN()`: ! subscript out of bounds --- Backtrace: ▆ 1. ├─base::system.time(...) 2. └─SuperLearner::CV.SuperLearner(...) 3. └─base::lapply(cvList, "[[", "cvAllSL") ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'Guide-to-SuperLearner.Rmd' failed with diagnostics: subscript out of bounds --- failed re-building ‘Guide-to-SuperLearner.Rmd’ SUMMARY: processing the following file failed: ‘Guide-to-SuperLearner.Rmd’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 2.0-29
Check: tests
Result: ERROR Running ‘testthat.R’ [137s/515s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(SuperLearner) Loading required package: nnls Loading required package: gam Loading required package: splines Loading required package: foreach Loaded gam 1.22-6 Super Learner Version: 2.0-29 Package created on 2024-02-06 > > test_check("SuperLearner") Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Error in xgboost::xgboost(data = xgmat, objective = "binary:logistic", : argument "y" is missing, with no default Saving _problems/test-XGBoost-25.R Warning: The response y is integer, bartMachine will run regression. Warning: The response y is integer, bartMachine will run regression. Warning: The response y is integer, bartMachine will run regression. lasso-penalized linear regression with n=506, p=13 At minimum cross-validation error (lambda=0.0222): ------------------------------------------------- Nonzero coefficients: 11 Cross-validation error (deviance): 23.29 R-squared: 0.72 Signal-to-noise ratio: 2.63 Scale estimate (sigma): 4.826 lasso-penalized logistic regression with n=506, p=13 At minimum cross-validation error (lambda=0.0026): ------------------------------------------------- Nonzero coefficients: 12 Cross-validation error (deviance): 0.66 R-squared: 0.48 Signal-to-noise ratio: 0.94 Prediction error: 0.123 lasso-penalized linear regression with n=506, p=13 At minimum cross-validation error (lambda=0.0362): ------------------------------------------------- Nonzero coefficients: 11 Cross-validation error (deviance): 23.30 R-squared: 0.72 Signal-to-noise ratio: 2.62 Scale estimate (sigma): 4.827 lasso-penalized logistic regression with n=506, p=13 At minimum cross-validation error (lambda=0.0016): ------------------------------------------------- Nonzero coefficients: 13 Cross-validation error (deviance): 0.63 R-squared: 0.50 Signal-to-noise ratio: 0.99 Prediction error: 0.132 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.biglasso"), cvControl = list(V = 2)) Risk Coef SL.mean_All 84.62063 0.02136708 SL.biglasso_All 26.01864 0.97863292 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.biglasso"), cvControl = list(V = 2)) Risk Coef SL.mean_All 0.2346857 0 SL.biglasso_All 0.1039122 1 Y 0 1 53 47 $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params $params$ntree [1] 100 [1] "SL.randomForest_1" "X" "Y" [4] "create_rf" "data" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.045984 1 $grid mtry 1 1 2 4 3 20 $names [1] "SL.randomForest_1" "SL.randomForest_2" "SL.randomForest_3" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.06729890 0.93195369 SL.randomForest_2_All 0.07219426 0.00000000 SL.randomForest_3_All 0.07243423 0.06804631 $grid alpha 1 0.00 2 0.25 3 0.50 4 0.75 5 1.00 $names [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75" [5] "SL.glmnet_1" $base_learner [1] "SL.glmnet" $params list() [1] "SL.glmnet_0" "SL.glmnet_0.25" "SL.glmnet_0.5" "SL.glmnet_0.75" [5] "SL.glmnet_1" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = ls(learners), cvControl = list(V = 2), env = learners) Risk Coef SL.glmnet_0_All 0.08849610 0 SL.glmnet_0.25_All 0.08116755 0 SL.glmnet_0.5_All 0.06977106 1 SL.glmnet_0.75_All 0.07686953 0 SL.glmnet_1_All 0.07730595 0 Call: SuperLearner(Y = Y, X = X_clean, family = binomial(), SL.library = c("SL.mean", svm$names), cvControl = list(V = 3)) Risk Coef SL.mean_All 0.25711218 0.0000000 SL.svm_polynomial_All 0.08463484 0.1443046 SL.svm_radial_All 0.06530910 0.0000000 SL.svm_sigmoid_All 0.05716227 0.8556954 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Degrees of Freedom: 505 Total (i.e. Null); 492 Residual Null Deviance: 42720 Residual Deviance: 11080 AIC: 3028 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 22.51785) Null deviance: 42716 on 505 degrees of freedom Residual deviance: 11079 on 492 degrees of freedom AIC: 3027.6 Number of Fisher Scoring iterations: 2 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.724 0.006446 ** crim -0.040649 0.049796 -0.816 0.414321 zn 0.012134 0.010678 1.136 0.255786 indus -0.040715 0.045615 -0.893 0.372078 chas 0.248209 0.653283 0.380 0.703989 nox -3.601085 2.924365 -1.231 0.218170 rm 1.155157 0.374843 3.082 0.002058 ** age -0.018660 0.009319 -2.002 0.045252 * dis -0.518934 0.146286 -3.547 0.000389 *** rad 0.255522 0.061391 4.162 3.15e-05 *** tax -0.009500 0.003107 -3.057 0.002233 ** ptratio -0.409317 0.103191 -3.967 7.29e-05 *** black -0.001451 0.002558 -0.567 0.570418 lstat -0.318436 0.054735 -5.818 5.96e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 669.76 on 505 degrees of freedom Residual deviance: 296.39 on 492 degrees of freedom AIC: 324.39 Number of Fisher Scoring iterations: 7 [1] "coefficients" "residuals" "fitted.values" [4] "effects" "R" "rank" [7] "qr" "family" "linear.predictors" [10] "deviance" "aic" "null.deviance" [13] "iter" "weights" "prior.weights" [16] "df.residual" "df.null" "y" [19] "converged" "boundary" "call" [22] "formula" "terms" "data" [25] "offset" "control" "method" [28] "contrasts" "xlevels" Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 22.51785) Null deviance: 42716 on 505 degrees of freedom Residual deviance: 11079 on 492 degrees of freedom AIC: 3027.6 Number of Fisher Scoring iterations: 2 Call: glm(formula = Y ~ ., family = family, data = X, weights = obsWeights, model = model) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.724 0.006446 ** crim -0.040649 0.049796 -0.816 0.414321 zn 0.012134 0.010678 1.136 0.255786 indus -0.040715 0.045615 -0.893 0.372078 chas 0.248209 0.653283 0.380 0.703989 nox -3.601085 2.924365 -1.231 0.218170 rm 1.155157 0.374843 3.082 0.002058 ** age -0.018660 0.009319 -2.002 0.045252 * dis -0.518934 0.146286 -3.547 0.000389 *** rad 0.255522 0.061391 4.162 3.15e-05 *** tax -0.009500 0.003107 -3.057 0.002233 ** ptratio -0.409317 0.103191 -3.967 7.29e-05 *** black -0.001451 0.002558 -0.567 0.570418 lstat -0.318436 0.054735 -5.818 5.96e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 669.76 on 505 degrees of freedom Residual deviance: 296.39 on 492 degrees of freedom AIC: 324.39 Number of Fisher Scoring iterations: 7 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.glm")) Risk Coef SL.mean_All 84.74142 0.0134192 SL.glm_All 23.62549 0.9865808 V1 Min. :-3.921 1st Qu.:17.514 Median :22.124 Mean :22.533 3rd Qu.:27.345 Max. :44.376 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.glm")) Risk Coef SL.mean_All 0.23580362 0.01315872 SL.glm_All 0.09519266 0.98684128 V1 Min. :0.004942 1st Qu.:0.035424 Median :0.196222 Mean :0.375494 3rd Qu.:0.781687 Max. :0.991313 Got an error, as expected. <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8> Got an error, as expected. <simpleError in predict.glmnet(object$glmnet.fit, newx, s = lambda, ...): The number of variables in newx must be 8> Call: lda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Coefficients of linear discriminants: LD1 crim 0.0012515925 zn 0.0095179029 indus -0.0166376334 chas 0.1399207112 nox -2.9934367740 rm 0.5612713068 age -0.0128420045 dis -0.3095403096 rad 0.0695027989 tax -0.0027771271 ptratio -0.2059853828 black 0.0006058031 lstat -0.0816668897 Call: lda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Coefficients of linear discriminants: LD1 crim 0.0012515925 zn 0.0095179029 indus -0.0166376334 chas 0.1399207112 nox -2.9934367740 rm 0.5612713068 age -0.0128420045 dis -0.3095403096 rad 0.0695027989 tax -0.0027771271 ptratio -0.2059853828 black 0.0006058031 lstat -0.0816668897 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -0.80469 -0.23612 -0.03105 0.23080 1.05224 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 *** crim 0.0003028 0.0023585 0.128 0.897888 zn 0.0023028 0.0009851 2.338 0.019808 * indus -0.0040254 0.0044131 -0.912 0.362135 chas 0.0338534 0.0618295 0.548 0.584264 nox -0.7242540 0.2741160 -2.642 0.008501 ** rm 0.1357981 0.0299915 4.528 7.48e-06 *** age -0.0031071 0.0009480 -3.278 0.001121 ** dis -0.0748924 0.0143135 -5.232 2.48e-07 *** rad 0.0168160 0.0047612 3.532 0.000451 *** tax -0.0006719 0.0002699 -2.490 0.013110 * ptratio -0.0498376 0.0093885 -5.308 1.68e-07 *** black 0.0001466 0.0001928 0.760 0.447370 lstat -0.0197591 0.0036395 -5.429 8.91e-08 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3405 on 492 degrees of freedom Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065 F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16 [1] "coefficients" "residuals" "fitted.values" "effects" [5] "weights" "rank" "assign" "qr" [9] "df.residual" "xlevels" "call" "terms" Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 *** crim -1.080e-01 3.286e-02 -3.287 0.001087 ** zn 4.642e-02 1.373e-02 3.382 0.000778 *** indus 2.056e-02 6.150e-02 0.334 0.738288 chas 2.687e+00 8.616e-01 3.118 0.001925 ** nox -1.777e+01 3.820e+00 -4.651 4.25e-06 *** rm 3.810e+00 4.179e-01 9.116 < 2e-16 *** age 6.922e-04 1.321e-02 0.052 0.958229 dis -1.476e+00 1.995e-01 -7.398 6.01e-13 *** rad 3.060e-01 6.635e-02 4.613 5.07e-06 *** tax -1.233e-02 3.760e-03 -3.280 0.001112 ** ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 *** black 9.312e-03 2.686e-03 3.467 0.000573 *** lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.745 on 492 degrees of freedom Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338 F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16 Call: stats::lm(formula = Y ~ ., data = X, weights = obsWeights, model = model) Residuals: Min 1Q Median 3Q Max -0.80469 -0.23612 -0.03105 0.23080 1.05224 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6675402 0.3662392 4.553 6.67e-06 *** crim 0.0003028 0.0023585 0.128 0.897888 zn 0.0023028 0.0009851 2.338 0.019808 * indus -0.0040254 0.0044131 -0.912 0.362135 chas 0.0338534 0.0618295 0.548 0.584264 nox -0.7242540 0.2741160 -2.642 0.008501 ** rm 0.1357981 0.0299915 4.528 7.48e-06 *** age -0.0031071 0.0009480 -3.278 0.001121 ** dis -0.0748924 0.0143135 -5.232 2.48e-07 *** rad 0.0168160 0.0047612 3.532 0.000451 *** tax -0.0006719 0.0002699 -2.490 0.013110 * ptratio -0.0498376 0.0093885 -5.308 1.68e-07 *** black 0.0001466 0.0001928 0.760 0.447370 lstat -0.0197591 0.0036395 -5.429 8.91e-08 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.3405 on 492 degrees of freedom Multiple R-squared: 0.5192, Adjusted R-squared: 0.5065 F-statistic: 40.86 on 13 and 492 DF, p-value: < 2.2e-16 Call: SuperLearner(Y = Y_gaus, X = X, family = gaussian(), SL.library = c("SL.mean", "SL.lm")) Risk Coef SL.mean_All 84.6696 0.02186479 SL.lm_All 24.3340 0.97813521 V1 Min. :-3.695 1st Qu.:17.557 Median :22.128 Mean :22.533 3rd Qu.:27.303 Max. :44.189 Call: SuperLearner(Y = Y_bin, X = X, family = binomial(), SL.library = c("SL.mean", "SL.lm")) Risk Coef SL.mean_All 0.2349366 0 SL.lm_All 0.1125027 1 V1 Min. :0.0000 1st Qu.:0.1281 Median :0.3530 Mean :0.3899 3rd Qu.:0.6091 Max. :1.0000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNLS", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.1986827 0.31226655 SL.glmnet_All 0.1803963 0.66105261 SL.mean_All 0.2534500 0.02668084 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.NNLS", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.1921176 0.08939677 SL.glmnet_All 0.1635548 0.91060323 SL.mean_All 0.2504500 0.00000000 SL.bad_algorithm_All NA 0.00000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNLS2", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2279346 0.05397859 SL.glmnet_All 0.1670620 0.94602141 SL.mean_All 0.2504500 0.00000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.NNloglik", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.5804469 0.1760951 SL.glmnet_All 0.5010294 0.8239049 SL.mean_All 0.6964542 0.0000000 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.NNloglik", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All Inf 0.1338597 SL.glmnet_All 0.5027498 0.8661403 SL.mean_All 0.7000679 0.0000000 SL.bad_algorithm_All NA 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.CC_LS", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2033781 0.16438434 SL.glmnet_All 0.1740498 0.82391928 SL.mean_All 0.2516500 0.01169638 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.CC_nloglik", verbose = F, cvControl = list(V = 2)) Risk Coef SL.rpart_All 295.8455 0.1014591 SL.glmnet_All 205.3289 0.7867610 SL.mean_All 277.1389 0.1117798 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.CC_nloglik", verbose = T, cvControl = list(V = 2)) Risk Coef SL.rpart_All 212.5569 0.2707202 SL.glmnet_All 193.9384 0.7292798 SL.mean_All 277.1389 0.0000000 SL.bad_algorithm_All NA 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = SL.library, method = "method.AUC", verbose = FALSE, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2533780 0.3333333 SL.glmnet_All 0.1869683 0.3333333 SL.mean_All 0.5550495 0.3333333 Error in (function (Y, X, newX, ...) : bad algorithm Error in (function (Y, X, newX, ...) : bad algorithm Removing failed learners: SL.bad_algorithm_All Error in (function (Y, X, newX, ...) : bad algorithm Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = c(SL.library, "SL.bad_algorithm"), method = "method.AUC", verbose = TRUE, cvControl = list(V = 2)) Risk Coef SL.rpart_All 0.2467721 0.2982123 SL.glmnet_All 0.1705535 0.3508938 SL.mean_All 0.5150135 0.3508938 SL.bad_algorithm_All NA 0.0000000 Call: qda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Call: qda(X, grouping = Y, prior = prior, method = method, tol = tol, CV = CV, nu = nu) Prior probabilities of groups: 0 1 0.6245059 0.3754941 Group means: crim zn indus chas nox rm age dis 0 5.2936824 4.708861 13.622089 0.05379747 0.5912399 5.985693 77.93228 3.349307 1 0.8191541 22.431579 7.003316 0.09473684 0.4939153 6.781821 53.01211 4.536371 rad tax ptratio black lstat 0 11.588608 459.9209 19.19968 340.6392 16.042468 1 6.157895 322.2789 17.21789 383.3425 7.015947 Y 0 1 62 38 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = sl_lib, cvControl = list(V = 2)) Risk Coef SL.randomForest_All 0.0384594 0.98145221 SL.mean_All 0.2356000 0.01854779 $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_All 0.05215472 1 SL.randomForest_1 <- function(...) SL.randomForest(...) $grid NULL $names [1] "SL.randomForest_1" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" [1] 1 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.04151372 1 $grid mtry 1 1 2 2 $names [1] "SL.randomForest_1" "SL.randomForest_2" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" "SL.randomForest_2" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.05852161 0.8484752 SL.randomForest_2_All 0.05319324 0.1515248 $grid mtry 1 1 2 2 $names [1] "SL.randomForest_1" "SL.randomForest_2" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1" "SL.randomForest_2" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_All 0.04540374 0.2120815 SL.randomForest_2_All 0.03931360 0.7879185 $grid mtry nodesize maxnodes 1 1 NULL NULL 2 2 NULL NULL $names [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL" $base_learner [1] "SL.randomForest" $params list() [1] "SL.randomForest_1_NULL_NULL" "SL.randomForest_2_NULL_NULL" Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_NULL_NULL_All 0.05083433 0.2589592 SL.randomForest_2_NULL_NULL_All 0.04697238 0.7410408 $grid mtry maxnodes 1 1 5 2 2 5 3 1 10 4 2 10 5 1 NULL 6 2 NULL $names [1] "SL.randomForest_1_5" "SL.randomForest_2_5" "SL.randomForest_1_10" [4] "SL.randomForest_2_10" "SL.randomForest_1_NULL" "SL.randomForest_2_NULL" $base_learner [1] "SL.randomForest" $params list() Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2), env = sl_env) Risk Coef SL.randomForest_1_5_All 0.04597977 0.0000000 SL.randomForest_2_5_All 0.03951320 0.0000000 SL.randomForest_1_10_All 0.04337471 0.1117946 SL.randomForest_2_10_All 0.03898477 0.8882054 SL.randomForest_1_NULL_All 0.04395171 0.0000000 SL.randomForest_2_NULL_All 0.03928269 0.0000000 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_5_All 0.05330062 0.4579034 SL.randomForest_2_5_All 0.05189278 0.0000000 SL.randomForest_1_10_All 0.05263432 0.1614643 SL.randomForest_2_10_All 0.05058144 0.0000000 SL.randomForest_1_NULL_All 0.05415397 0.0000000 SL.randomForest_2_NULL_All 0.05036643 0.3806323 Call: SuperLearner(Y = Y, X = X, family = binomial(), SL.library = create_rf$names, cvControl = list(V = 2)) Risk Coef SL.randomForest_1_5_All 0.05978213 0 SL.randomForest_2_5_All 0.05628852 0 SL.randomForest_1_10_All 0.05751494 0 SL.randomForest_2_10_All 0.05889935 0 SL.randomForest_1_NULL_All 0.05629605 1 SL.randomForest_2_NULL_All 0.05807645 0 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Regression Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 5 Variable importance mode: none Splitrule: variance OOB prediction error (MSE): 10.57547 R squared (OOB): 0.8749748 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Probability estimation Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 1 Variable importance mode: none Splitrule: gini OOB prediction error (Brier s.): 0.08262419 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Regression Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 5 Variable importance mode: none Splitrule: variance OOB prediction error (MSE): 10.46443 R squared (OOB): 0.8762876 Ranger result Call: ranger::ranger(`_Y` ~ ., data = cbind(`_Y` = Y, X), num.trees = num.trees, mtry = mtry, min.node.size = min.node.size, replace = replace, sample.fraction = sample.fraction, case.weights = obsWeights, write.forest = write.forest, probability = probability, num.threads = num.threads, verbose = verbose) Type: Probability estimation Number of trees: 500 Sample size: 506 Number of independent variables: 13 Mtry: 3 Target node size: 1 Variable importance mode: none Splitrule: gini OOB prediction error (Brier s.): 0.08395011 Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 *** crim -1.080e-01 0.032865 -3.2865 1.087e-03 ** zn 4.642e-02 0.013727 3.3816 7.781e-04 *** indus 2.056e-02 0.061496 0.3343 7.383e-01 chas 2.687e+00 0.861580 3.1184 1.925e-03 ** nox -1.777e+01 3.819744 -4.6513 4.246e-06 *** rm 3.810e+00 0.417925 9.1161 1.979e-18 *** age 6.922e-04 0.013210 0.0524 9.582e-01 dis -1.476e+00 0.199455 -7.3980 6.013e-13 *** rad 3.060e-01 0.066346 4.6129 5.071e-06 *** tax -1.233e-02 0.003761 -3.2800 1.112e-03 ** ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 *** black 9.312e-03 0.002686 3.4668 5.729e-04 *** lstat -5.248e-01 0.050715 -10.3471 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 42716.3; residuals df: 492; residuals deviance: 11078.78; # obs.: 506; # non-zero weighted obs.: 506; AIC: 3027.609; log Likelihood: -1498.804; RSS: 11078.8; dispersion: 22.51785; iterations: 1; rank: 14; max tolerance: 1e+00; convergence: FALSE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.7242 6.446e-03 ** crim -0.040649 0.049796 -0.8163 4.143e-01 zn 0.012134 0.010678 1.1364 2.558e-01 indus -0.040715 0.045615 -0.8926 3.721e-01 chas 0.248209 0.653283 0.3799 7.040e-01 nox -3.601085 2.924365 -1.2314 2.182e-01 rm 1.155157 0.374843 3.0817 2.058e-03 ** age -0.018660 0.009319 -2.0023 4.525e-02 * dis -0.518934 0.146286 -3.5474 3.891e-04 *** rad 0.255522 0.061391 4.1622 3.152e-05 *** tax -0.009500 0.003107 -3.0574 2.233e-03 ** ptratio -0.409317 0.103191 -3.9666 7.291e-05 *** black -0.001451 0.002558 -0.5674 5.704e-01 lstat -0.318436 0.054735 -5.8178 5.964e-09 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 669.76; residuals df: 492; residuals deviance: 296.39; # obs.: 506; # non-zero weighted obs.: 506; AIC: 324.3944; log Likelihood: -148.1972; RSS: 1107.5; dispersion: 1; iterations: 7; rank: 14; max tolerance: 7.55e-12; convergence: TRUE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error t value Pr(>|t|) (Intercept) 3.646e+01 5.103459 7.1441 3.283e-12 *** crim -1.080e-01 0.032865 -3.2865 1.087e-03 ** zn 4.642e-02 0.013727 3.3816 7.781e-04 *** indus 2.056e-02 0.061496 0.3343 7.383e-01 chas 2.687e+00 0.861580 3.1184 1.925e-03 ** nox -1.777e+01 3.819744 -4.6513 4.246e-06 *** rm 3.810e+00 0.417925 9.1161 1.979e-18 *** age 6.922e-04 0.013210 0.0524 9.582e-01 dis -1.476e+00 0.199455 -7.3980 6.013e-13 *** rad 3.060e-01 0.066346 4.6129 5.071e-06 *** tax -1.233e-02 0.003761 -3.2800 1.112e-03 ** ptratio -9.527e-01 0.130827 -7.2825 1.309e-12 *** black 9.312e-03 0.002686 3.4668 5.729e-04 *** lstat -5.248e-01 0.050715 -10.3471 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 42716.3; residuals df: 492; residuals deviance: 11078.78; # obs.: 506; # non-zero weighted obs.: 506; AIC: 3027.609; log Likelihood: -1498.804; RSS: 11078.8; dispersion: 22.51785; iterations: 1; rank: 14; max tolerance: 1e+00; convergence: FALSE. Generalized Linear Model of class 'speedglm': Call: speedglm::speedglm(formula = Y ~ ., data = X, family = family, weights = obsWeights, maxit = maxit, k = k) Coefficients: ------------------------------------------------------------------ Estimate Std. Error z value Pr(>|z|) (Intercept) 10.682635 3.921395 2.7242 6.446e-03 ** crim -0.040649 0.049796 -0.8163 4.143e-01 zn 0.012134 0.010678 1.1364 2.558e-01 indus -0.040715 0.045615 -0.8926 3.721e-01 chas 0.248209 0.653283 0.3799 7.040e-01 nox -3.601085 2.924365 -1.2314 2.182e-01 rm 1.155157 0.374843 3.0817 2.058e-03 ** age -0.018660 0.009319 -2.0023 4.525e-02 * dis -0.518934 0.146286 -3.5474 3.891e-04 *** rad 0.255522 0.061391 4.1622 3.152e-05 *** tax -0.009500 0.003107 -3.0574 2.233e-03 ** ptratio -0.409317 0.103191 -3.9666 7.291e-05 *** black -0.001451 0.002558 -0.5674 5.704e-01 lstat -0.318436 0.054735 -5.8178 5.964e-09 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- null df: 505; null deviance: 669.76; residuals df: 492; residuals deviance: 296.39; # obs.: 506; # non-zero weighted obs.: 506; AIC: 324.3944; log Likelihood: -148.1972; RSS: 1107.5; dispersion: 1; iterations: 7; rank: 14; max tolerance: 7.55e-12; convergence: TRUE. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: (Intercept) crim zn indus chas nox 3.646e+01 -1.080e-01 4.642e-02 2.056e-02 2.687e+00 -1.777e+01 rm age dis rad tax ptratio 3.810e+00 6.922e-04 -1.476e+00 3.060e-01 -1.233e-02 -9.527e-01 black lstat 9.312e-03 -5.248e-01 Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 36.459488 5.103459 7.144 3.283e-12 *** crim -0.108011 0.032865 -3.287 1.087e-03 ** zn 0.046420 0.013727 3.382 7.781e-04 *** indus 0.020559 0.061496 0.334 7.383e-01 chas 2.686734 0.861580 3.118 1.925e-03 ** nox -17.766611 3.819744 -4.651 4.246e-06 *** rm 3.809865 0.417925 9.116 1.979e-18 *** age 0.000692 0.013210 0.052 9.582e-01 dis -1.475567 0.199455 -7.398 6.013e-13 *** rad 0.306049 0.066346 4.613 5.071e-06 *** tax -0.012335 0.003761 -3.280 1.112e-03 ** ptratio -0.952747 0.130827 -7.283 1.309e-12 *** black 0.009312 0.002686 3.467 5.729e-04 *** lstat -0.524758 0.050715 -10.347 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 4.745298 on 492 degrees of freedom; observations: 506; R^2: 0.741; adjusted R^2: 0.734; F-statistic: 108.1 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 1.667540 0.366239 4.553 6.670e-06 *** crim 0.000303 0.002358 0.128 8.979e-01 zn 0.002303 0.000985 2.338 1.981e-02 * indus -0.004025 0.004413 -0.912 3.621e-01 chas 0.033853 0.061829 0.548 5.843e-01 nox -0.724254 0.274116 -2.642 8.501e-03 ** rm 0.135798 0.029992 4.528 7.483e-06 *** age -0.003107 0.000948 -3.278 1.121e-03 ** dis -0.074892 0.014313 -5.232 2.482e-07 *** rad 0.016816 0.004761 3.532 4.515e-04 *** tax -0.000672 0.000270 -2.490 1.311e-02 * ptratio -0.049838 0.009389 -5.308 1.677e-07 *** black 0.000147 0.000193 0.760 4.474e-01 lstat -0.019759 0.003639 -5.429 8.912e-08 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 0.340537 on 492 degrees of freedom; observations: 506; R^2: 0.519; adjusted R^2: 0.506; F-statistic: 40.86 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 36.459488 5.103459 7.144 3.283e-12 *** crim -0.108011 0.032865 -3.287 1.087e-03 ** zn 0.046420 0.013727 3.382 7.781e-04 *** indus 0.020559 0.061496 0.334 7.383e-01 chas 2.686734 0.861580 3.118 1.925e-03 ** nox -17.766611 3.819744 -4.651 4.246e-06 *** rm 3.809865 0.417925 9.116 1.979e-18 *** age 0.000692 0.013210 0.052 9.582e-01 dis -1.475567 0.199455 -7.398 6.013e-13 *** rad 0.306049 0.066346 4.613 5.071e-06 *** tax -0.012335 0.003761 -3.280 1.112e-03 ** ptratio -0.952747 0.130827 -7.283 1.309e-12 *** black 0.009312 0.002686 3.467 5.729e-04 *** lstat -0.524758 0.050715 -10.347 7.777e-23 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 4.745298 on 492 degrees of freedom; observations: 506; R^2: 0.741; adjusted R^2: 0.734; F-statistic: 108.1 on 13 and 492 df; p-value: 0. Linear Regression Model of class 'speedlm': Call: speedglm::speedlm(formula = Y ~ ., data = X, weights = obsWeights) Coefficients: ------------------------------------------------------------------ coef se t p.value (Intercept) 1.667540 0.366239 4.553 6.670e-06 *** crim 0.000303 0.002358 0.128 8.979e-01 zn 0.002303 0.000985 2.338 1.981e-02 * indus -0.004025 0.004413 -0.912 3.621e-01 chas 0.033853 0.061829 0.548 5.843e-01 nox -0.724254 0.274116 -2.642 8.501e-03 ** rm 0.135798 0.029992 4.528 7.483e-06 *** age -0.003107 0.000948 -3.278 1.121e-03 ** dis -0.074892 0.014313 -5.232 2.482e-07 *** rad 0.016816 0.004761 3.532 4.515e-04 *** tax -0.000672 0.000270 -2.490 1.311e-02 * ptratio -0.049838 0.009389 -5.308 1.677e-07 *** black 0.000147 0.000193 0.760 4.474e-01 lstat -0.019759 0.003639 -5.429 8.912e-08 *** ------------------------------------------------------------------- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 --- Residual standard error: 0.340537 on 492 degrees of freedom; observations: 506; R^2: 0.519; adjusted R^2: 0.506; F-statistic: 40.86 on 13 and 492 df; p-value: 0. [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ] ══ Skipped tests (9) ═══════════════════════════════════════════════════════════ • empty test (9): , , , , , , , , ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-XGBoost.R:25:1'): (code run outside of `test_that()`) ────────── Error in `UseMethod("predict")`: no applicable method for 'predict' applied to an object of class "NULL" Backtrace: ▆ 1. ├─stats::predict(sl, X) at test-XGBoost.R:25:1 2. └─SuperLearner::predict.SuperLearner(sl, X) 3. ├─base::do.call(...) 4. └─stats::predict(...) [ FAIL 1 | WARN 34 | SKIP 9 | PASS 67 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.