CRAN Package Check Results for Maintainer ‘Marvin N. Wright <cran at wrig.de>’

Last updated on 2025-12-28 01:49:06 CET.

Package ERROR NOTE OK
arf 1 12
blockForest 4 9
cpi 1 12
ranger 2 11

Package arf

Current CRAN status: ERROR: 1, OK: 12

Version: 0.2.4
Check: examples
Result: ERROR Running examples in 'arf-Ex.R' failed The error most likely occurred in: > ### Name: adversarial_rf > ### Title: Adversarial Random Forests > ### Aliases: adversarial_rf > > ### ** Examples > > # Train ARF and estimate leaf parameters > arf <- adversarial_rf(iris) Iteration: 0, Accuracy: 76.35% Error in `[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf)) : attempt access index 2/2 in VECTOR_ELT Calls: adversarial_rf -> unique -> [ -> [.data.table Execution halted Flavor: r-devel-windows-x86_64

Version: 0.2.4
Check: tests
Result: ERROR Running 'testthat.R' [4s] Running the tests in 'tests/testthat.R' failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(arf) > > test_check("arf") Iteration: 0, Accuracy: 78.6% Saving _problems/test-arguments-2.R Iteration: 0, Accuracy: 84.18% Saving _problems/test-conditions-2.R Saving _problems/test-impute-19.R Iteration: 0, Accuracy: 79.87% Saving _problems/test-input_data-6.R Iteration: 0, Accuracy: 77.21% Saving _problems/test-input_data-41.R Saving _problems/test-return_types-2.R Saving _problems/test-return_types-7.R Saving _problems/test-return_types-19.R Saving _problems/test-return_types-26.R Saving _problems/test-return_types-37.R Saving _problems/test-return_types-44.R Saving _problems/test-return_types-56.R Saving _problems/test-return_types-76.R Saving _problems/test-return_types-101.R Saving _problems/test-return_types-112.R Saving _problems/test-return_types-119.R Iteration: 0, Accuracy: 80.94% Saving _problems/test_expct-2.R [ FAIL 17 | WARN 0 | SKIP 0 | PASS 2 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-arguments.R:2:3'): FORDE works with alpha>0 ──────────────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, parallel = FALSE) at test-arguments.R:2:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-conditions.R:2:1'): (code run outside of `test_that()`) ──────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, parallel = FALSE) at test-conditions.R:2:1 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-impute.R:19:3'): Imputation fills missing values ─────────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::impute(iris_na, m = 1, parallel = FALSE) at test-impute.R:19:3 2. ├─base::do.call(...) 3. └─arf (local) `<fn>`(...) 4. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 5. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 6. └─data.table:::`[.data.table`(...) ── Error ('test-input_data.R:6:3'): FORGE works if y is a column name ────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(dat, parallel = FALSE) at test-input_data.R:6:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-input_data.R:41:3'): Imputation works if integers recoded to factors ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_warning(arf <- adversarial_rf(dat, parallel = FALSE)) at test-input_data.R:41:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─arf::adversarial_rf(dat, parallel = FALSE) 8. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 9. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 10. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:2:3'): ARF returns ranger object ──────────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:2:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:7:3'): FORDE returns correct list object ──────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:7:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:19:3'): FORDE categories sum to unity ─────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:19:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:26:3'): Likelihood calculation returns vector of log-likelihoods ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:26:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:37:3'): FORGE returns data frame when called with data frame ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:37:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:44:3'): FORGE returns data table when called with data table ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(...) at test-return_types.R:44:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:56:3'): FORGE returns matrix when called with matrix ── Error in ``[.data.table`(keep, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::forde(arf, x, parallel = FALSE) at test-return_types.R:56:3 2. ├─base::unique(keep[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─keep[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:76:3'): FORGE returns correct column types ────── Error in ``[.data.table`(keep, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::forde(arf, dat, parallel = FALSE) at test-return_types.R:76:3 2. ├─base::unique(keep[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─keep[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:101:3'): FORGE does not round to real data set precision if 'round == FALSE' ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:101:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:112:3'): FORGE returns factors with same levels (and order of levels) ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:112:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test-return_types.R:119:3'): EXPCT returns factors with same levels (and order of levels) ── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:119:3 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ── Error ('test_expct.R:2:1'): (code run outside of `test_that()`) ───────────── Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT Backtrace: ▆ 1. └─arf::adversarial_rf(iris, parallel = FALSE) at test_expct.R:2:1 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) [ FAIL 17 | WARN 0 | SKIP 0 | PASS 2 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 0.2.4
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'arf.Rmd' using rmarkdown Quitting from arf.Rmd:23-34 [arf] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 2/2 in VECTOR_ELT --- Backtrace: ▆ 1. └─arf::adversarial_rf(iris) 2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]) 3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)] 4. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'arf.Rmd' failed with diagnostics: attempt access index 2/2 in VECTOR_ELT --- failed re-building 'arf.Rmd' SUMMARY: processing the following file failed: 'arf.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-devel-windows-x86_64

Package blockForest

Current CRAN status: NOTE: 4, OK: 9

Version: 0.2.6
Check: CRAN incoming feasibility
Result: NOTE Maintainer: ‘Marvin N. Wright <cran@wrig.de>’ No Authors@R field in DESCRIPTION. Please add one, modifying Authors@R: c(person(given = "Roman", family = "Hornung", role = "aut"), person(given = c("Marvin", "N."), family = "Wright", role = c("aut", "cre"), email = "cran@wrig.de")) as necessary. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.2.6
Check: installed package size
Result: NOTE installed size is 7.0Mb sub-directories of 1Mb or more: libs 6.6Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

Package cpi

Current CRAN status: ERROR: 1, OK: 12

Version: 0.1.5
Check: examples
Result: ERROR Running examples in 'cpi-Ex.R' failed The error most likely occurred in: > ### Name: cpi > ### Title: Conditional Predictive Impact (CPI). > ### Aliases: cpi > > ### ** Examples > > library(mlr3) > library(mlr3learners) > > # Regression with linear model and holdout validation > cpi(task = tsk("mtcars"), learner = lrn("regr.lm"), + resampling = rsmp("holdout")) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: cpi ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-windows-x86_64

Version: 0.1.5
Check: tests
Result: ERROR Running 'testthat.R' [4s] Running the tests in 'tests/testthat.R' failed. Complete output: > library(testthat) > library(cpi) > > test_check("cpi") Saving _problems/test-check_args-7.R Saving _problems/test-check_args-21.R Saving _problems/test-check_args-36.R [ FAIL 3 | WARN 0 | SKIP 0 | PASS 1 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-check_args.R:6:3'): returns object of correct dimensions, regression ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─cpi::cpi(task = task, learner = lrn("regr.lm"), resampling = rsmp("holdout")) at test-check_args.R:6:3 2. └─cpi:::fit_learner(...) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test-check_args.R:19:3'): returns object of correct dimensions, classification ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─cpi::cpi(...) at test-check_args.R:19:3 2. └─cpi:::fit_learner(...) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test-check_args.R:33:3'): returns object of correct dimensions, group classification ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─cpi::cpi(...) at test-check_args.R:33:3 2. └─cpi:::fit_learner(...) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 1 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 0.1.5
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'intro.Rmd' using rmarkdown Quitting from intro.Rmd:25-33 [first_example] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 9/9 in VECTOR_ELT --- Backtrace: ▆ 1. └─cpi::cpi(...) 2. └─cpi:::fit_learner(...) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'intro.Rmd' failed with diagnostics: attempt access index 9/9 in VECTOR_ELT --- failed re-building 'intro.Rmd' SUMMARY: processing the following file failed: 'intro.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-devel-windows-x86_64

Package ranger

Current CRAN status: NOTE: 2, OK: 11

Version: 0.17.0
Check: installed package size
Result: NOTE installed size is 8.0Mb sub-directories of 1Mb or more: libs 7.7Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.