Last updated on 2025-12-28 01:49:06 CET.
| Package | ERROR | NOTE | OK |
|---|---|---|---|
| arf | 1 | 12 | |
| blockForest | 4 | 9 | |
| cpi | 1 | 12 | |
| ranger | 2 | 11 |
Current CRAN status: ERROR: 1, OK: 12
Version: 0.2.4
Check: examples
Result: ERROR
Running examples in 'arf-Ex.R' failed
The error most likely occurred in:
> ### Name: adversarial_rf
> ### Title: Adversarial Random Forests
> ### Aliases: adversarial_rf
>
> ### ** Examples
>
> # Train ARF and estimate leaf parameters
> arf <- adversarial_rf(iris)
Iteration: 0, Accuracy: 76.35%
Error in `[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf)) :
attempt access index 2/2 in VECTOR_ELT
Calls: adversarial_rf -> unique -> [ -> [.data.table
Execution halted
Flavor: r-devel-windows-x86_64
Version: 0.2.4
Check: tests
Result: ERROR
Running 'testthat.R' [4s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(arf)
>
> test_check("arf")
Iteration: 0, Accuracy: 78.6%
Saving _problems/test-arguments-2.R
Iteration: 0, Accuracy: 84.18%
Saving _problems/test-conditions-2.R
Saving _problems/test-impute-19.R
Iteration: 0, Accuracy: 79.87%
Saving _problems/test-input_data-6.R
Iteration: 0, Accuracy: 77.21%
Saving _problems/test-input_data-41.R
Saving _problems/test-return_types-2.R
Saving _problems/test-return_types-7.R
Saving _problems/test-return_types-19.R
Saving _problems/test-return_types-26.R
Saving _problems/test-return_types-37.R
Saving _problems/test-return_types-44.R
Saving _problems/test-return_types-56.R
Saving _problems/test-return_types-76.R
Saving _problems/test-return_types-101.R
Saving _problems/test-return_types-112.R
Saving _problems/test-return_types-119.R
Iteration: 0, Accuracy: 80.94%
Saving _problems/test_expct-2.R
[ FAIL 17 | WARN 0 | SKIP 0 | PASS 2 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-arguments.R:2:3'): FORDE works with alpha>0 ────────────────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, parallel = FALSE) at test-arguments.R:2:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-conditions.R:2:1'): (code run outside of `test_that()`) ────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, parallel = FALSE) at test-conditions.R:2:1
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-impute.R:19:3'): Imputation fills missing values ───────────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::impute(iris_na, m = 1, parallel = FALSE) at test-impute.R:19:3
2. ├─base::do.call(...)
3. └─arf (local) `<fn>`(...)
4. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
5. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
6. └─data.table:::`[.data.table`(...)
── Error ('test-input_data.R:6:3'): FORGE works if y is a column name ──────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(dat, parallel = FALSE) at test-input_data.R:6:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-input_data.R:41:3'): Imputation works if integers recoded to factors ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. ├─testthat::expect_warning(arf <- adversarial_rf(dat, parallel = FALSE)) at test-input_data.R:41:3
2. │ └─testthat:::expect_condition_matching_(...)
3. │ └─testthat:::quasi_capture(...)
4. │ ├─testthat (local) .capture(...)
5. │ │ └─base::withCallingHandlers(...)
6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo))
7. └─arf::adversarial_rf(dat, parallel = FALSE)
8. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
9. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
10. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:2:3'): ARF returns ranger object ────────────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:2:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:7:3'): FORDE returns correct list object ────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:7:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:19:3'): FORDE categories sum to unity ───────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:19:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:26:3'): Likelihood calculation returns vector of log-likelihoods ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:26:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:37:3'): FORGE returns data frame when called with data frame ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:37:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:44:3'): FORGE returns data table when called with data table ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(...) at test-return_types.R:44:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:56:3'): FORGE returns matrix when called with matrix ──
Error in ``[.data.table`(keep, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::forde(arf, x, parallel = FALSE) at test-return_types.R:56:3
2. ├─base::unique(keep[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─keep[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:76:3'): FORGE returns correct column types ──────
Error in ``[.data.table`(keep, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::forde(arf, dat, parallel = FALSE) at test-return_types.R:76:3
2. ├─base::unique(keep[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─keep[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:101:3'): FORGE does not round to real data set precision if 'round == FALSE' ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:101:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:112:3'): FORGE returns factors with same levels (and order of levels) ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:112:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test-return_types.R:119:3'): EXPCT returns factors with same levels (and order of levels) ──
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, num_trees = 2, verbose = FALSE, parallel = FALSE) at test-return_types.R:119:3
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
── Error ('test_expct.R:2:1'): (code run outside of `test_that()`) ─────────────
Error in ``[.data.table`(tmp2, , `:=`(cnt, .N), by = .(tree, leaf))`: attempt access index 2/2 in VECTOR_ELT
Backtrace:
▆
1. └─arf::adversarial_rf(iris, parallel = FALSE) at test_expct.R:2:1
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
[ FAIL 17 | WARN 0 | SKIP 0 | PASS 2 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-windows-x86_64
Version: 0.2.4
Check: re-building of vignette outputs
Result: ERROR
Error(s) in re-building vignettes:
--- re-building 'arf.Rmd' using rmarkdown
Quitting from arf.Rmd:23-34 [arf]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<error/rlang_error>
Error in `[.data.table`:
! attempt access index 2/2 in VECTOR_ELT
---
Backtrace:
▆
1. └─arf::adversarial_rf(iris)
2. ├─base::unique(tmp2[, `:=`(cnt, .N), by = .(tree, leaf)])
3. ├─tmp2[, `:=`(cnt, .N), by = .(tree, leaf)]
4. └─data.table:::`[.data.table`(...)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'arf.Rmd' failed with diagnostics:
attempt access index 2/2 in VECTOR_ELT
--- failed re-building 'arf.Rmd'
SUMMARY: processing the following file failed:
'arf.Rmd'
Error: Vignette re-building failed.
Execution halted
Flavor: r-devel-windows-x86_64
Current CRAN status: NOTE: 4, OK: 9
Version: 0.2.6
Check: CRAN incoming feasibility
Result: NOTE
Maintainer: ‘Marvin N. Wright <cran@wrig.de>’
No Authors@R field in DESCRIPTION.
Please add one, modifying
Authors@R: c(person(given = "Roman",
family = "Hornung",
role = "aut"),
person(given = c("Marvin", "N."),
family = "Wright",
role = c("aut", "cre"),
email = "cran@wrig.de"))
as necessary.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc
Version: 0.2.6
Check: installed package size
Result: NOTE
installed size is 7.0Mb
sub-directories of 1Mb or more:
libs 6.6Mb
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64
Current CRAN status: ERROR: 1, OK: 12
Version: 0.1.5
Check: examples
Result: ERROR
Running examples in 'cpi-Ex.R' failed
The error most likely occurred in:
> ### Name: cpi
> ### Title: Conditional Predictive Impact (CPI).
> ### Aliases: cpi
>
> ### ** Examples
>
> library(mlr3)
> library(mlr3learners)
>
> # Regression with linear model and holdout validation
> cpi(task = tsk("mtcars"), learner = lrn("regr.lm"),
+ resampling = rsmp("holdout"))
Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") :
attempt access index 9/9 in VECTOR_ELT
Calls: cpi ... initialize -> .__ResultData__initialize -> [ -> [.data.table
Execution halted
Flavor: r-devel-windows-x86_64
Version: 0.1.5
Check: tests
Result: ERROR
Running 'testthat.R' [4s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> library(testthat)
> library(cpi)
>
> test_check("cpi")
Saving _problems/test-check_args-7.R
Saving _problems/test-check_args-21.R
Saving _problems/test-check_args-36.R
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 1 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-check_args.R:6:3'): returns object of correct dimensions, regression ──
Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT
Backtrace:
▆
1. └─cpi::cpi(task = task, learner = lrn("regr.lm"), resampling = rsmp("holdout")) at test-check_args.R:6:3
2. └─cpi:::fit_learner(...)
3. └─mlr3::resample(task, learner, resampling, store_models = TRUE)
4. └─ResultData$new(data, data_extra, store_backends = store_backends)
5. └─mlr3 (local) initialize(...)
6. └─mlr3:::.__ResultData__initialize(...)
7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"]
8. └─data.table:::`[.data.table`(...)
── Error ('test-check_args.R:19:3'): returns object of correct dimensions, classification ──
Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT
Backtrace:
▆
1. └─cpi::cpi(...) at test-check_args.R:19:3
2. └─cpi:::fit_learner(...)
3. └─mlr3::resample(task, learner, resampling, store_models = TRUE)
4. └─ResultData$new(data, data_extra, store_backends = store_backends)
5. └─mlr3 (local) initialize(...)
6. └─mlr3:::.__ResultData__initialize(...)
7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"]
8. └─data.table:::`[.data.table`(...)
── Error ('test-check_args.R:33:3'): returns object of correct dimensions, group classification ──
Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT
Backtrace:
▆
1. └─cpi::cpi(...) at test-check_args.R:33:3
2. └─cpi:::fit_learner(...)
3. └─mlr3::resample(task, learner, resampling, store_models = TRUE)
4. └─ResultData$new(data, data_extra, store_backends = store_backends)
5. └─mlr3 (local) initialize(...)
6. └─mlr3:::.__ResultData__initialize(...)
7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"]
8. └─data.table:::`[.data.table`(...)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 1 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-windows-x86_64
Version: 0.1.5
Check: re-building of vignette outputs
Result: ERROR
Error(s) in re-building vignettes:
--- re-building 'intro.Rmd' using rmarkdown
Quitting from intro.Rmd:25-33 [first_example]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<error/rlang_error>
Error in `[.data.table`:
! attempt access index 9/9 in VECTOR_ELT
---
Backtrace:
▆
1. └─cpi::cpi(...)
2. └─cpi:::fit_learner(...)
3. └─mlr3::resample(task, learner, resampling, store_models = TRUE)
4. └─ResultData$new(data, data_extra, store_backends = store_backends)
5. └─mlr3 (local) initialize(...)
6. └─mlr3:::.__ResultData__initialize(...)
7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"]
8. └─data.table:::`[.data.table`(...)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Error: processing vignette 'intro.Rmd' failed with diagnostics:
attempt access index 9/9 in VECTOR_ELT
--- failed re-building 'intro.Rmd'
SUMMARY: processing the following file failed:
'intro.Rmd'
Error: Vignette re-building failed.
Execution halted
Flavor: r-devel-windows-x86_64
Current CRAN status: NOTE: 2, OK: 11
Version: 0.17.0
Check: installed package size
Result: NOTE
installed size is 8.0Mb
sub-directories of 1Mb or more:
libs 7.7Mb
Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.