CRAN Package Check Results for Maintainer ‘Kellie Archer <archer.43 at osu.edu>’

Last updated on 2025-12-04 07:51:30 CET.

Package ERROR NOTE OK
countgmifs 4 8
glmnetcr 13
glmpathcr 13
hdcuremodels 7 6
ordinalbayes 13
ordinalgmifs 13

Package countgmifs

Current CRAN status: NOTE: 4, OK: 8

Version: 0.0.2
Check: CRAN incoming feasibility
Result: NOTE Maintainer: ‘Kellie Archer <archer.43@osu.edu>’ Package CITATION file contains call(s) to old-style personList() or as.personList(). Please use c() on person objects instead. Package CITATION file contains call(s) to old-style citEntry(). Please use bibentry() instead. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 0.0.2
Check: LazyData
Result: NOTE 'LazyData' is specified without a 'data' directory Flavors: r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package glmnetcr

Current CRAN status: OK: 13

Package glmpathcr

Current CRAN status: OK: 13

Package hdcuremodels

Current CRAN status: ERROR: 7, OK: 6

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [340s/440s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758893876 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924605 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421454834 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008323144 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519726813 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032110145 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [187s/245s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758893876 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924605 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421454834 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008323144 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519726813 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032113726 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.0.5
Check: tests
Result: ERROR Running 'testthat.R' [304s] Running the tests in 'tests/testthat.R' failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758903343 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924693 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421471135 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008321421 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519728553 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032110859 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-devel-windows-x86_64

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [330s/429s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758893876 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924605 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421454834 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008323144 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519726813 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032110145 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-patched-linux-x86_64

Version: 0.0.5
Check: tests
Result: ERROR Running ‘testthat.R’ [327s/401s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758893876 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924605 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421454834 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008323144 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519726813 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600791 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032110145 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658089751 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-release-linux-x86_64

Version: 0.0.5
Check: tests
Result: ERROR Running 'testthat.R' [313s] Running the tests in 'tests/testthat.R' failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756012758903343 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924693 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421471135 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008321421 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519728553 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032110859 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-release-windows-x86_64

Version: 0.0.5
Check: tests
Result: ERROR Running 'testthat.R' [418s] Running the tests in 'tests/testthat.R' failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview > # * https://testthat.r-lib.org/articles/special-files.html > > library(testthat) > library(hdcuremodels) > > test_check("hdcuremodels") Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.7560127589109 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 297 Maximum C-statistic: 0.770985658659945 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 434 Maximum C-statistic: 0.734125636924693 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.09 Selected lambda for latency: 0.09 Maximum C-statistic: 0.691812421456852 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.105 Selected lambda for latency: 0.105 Maximum C-statistic: 0.71552008321421 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 3 Maximum C-statistic: 0.697702519728553 Fitting a final model... Family: Cox Algorithm: EM Family: Cox Algorithm: EM Saving _problems/test-formula-11.R Saving _problems/test-logLik-11.R Saving _problems/test-nobs-11.R Fold 1 out of 2 training... Fold 2 out of 2 training... Selected step: 27 Maximum C-statistic: 0.674984053600785 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.155 Selected lambda for latency: 0.155 Maximum C-statistic: 0.635331032130834 Fitting a final model... Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Weibull GMIFS algorithm $b_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0 [2,] 0 0 0.02 0 0 0 [3,] 0 0 0.03 0 0 0 [4,] 0 0 0.04 0 0 0 [5,] 0 0 0.05 0 0 0 [6,] 0 0 0.06 0 0 0 1274 more rows 6 more columns $beta_path U1 U2 X1 X2 X3 X4 [1,] 0 0 0.01 0 0 0.00 [2,] 0 0 0.02 0 0 0.00 [3,] 0 0 0.03 0 0 0.00 [4,] 0 0 0.03 0 0 0.01 [5,] 0 0 0.03 0 0 0.02 [6,] 0 0 0.03 0 0 0.03 1274 more rows 6 more columns $rate 1.74771 1.747557 1.745463 1.776432 1.806308 1.835547 1274 more elements $alpha 0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841 1274 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.083 Selected lambda for latency: 0.083 Maximum C-statistic: 0.724278947141186 Fitting a final model... mixturecure object fit using Cox EM algorithm $b 0 0 0 0 0 0 6 more elements $beta 0 0 0.8829866 0 0.3677159 0 6 more elements Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.062 Selected lambda for latency: 0.062 Maximum C-statistic: 0.756490658083608 Fitting a final model... mixturecure object fit using Weibull EM algorithm $b 0 0 0.3534216 -0.1938579 0 -0.4778904 6 more elements $beta 0 0 0 0 0 0 6 more elements $rate 5.125488 $alpha 0.897226 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Mixture cure model fit using the EM algorithm Number of non-zero incidence covariates at minimum AIC: 0 Number of non-zero latency covariates at minimum AIC: 17 Optimal step for selected information criterion: EM algorithm at step = 51 logLik = -118.896956094066 at step = 51 AIC = 273.793912188132 at step = 51 mAIC = 490.199530466681 at step = 51 cAIC = 290.4768390174 at step = 51 BIC = 311.492114308129 at step = 51 mBIC = 453.037837086205 at step = 51 EBIC = 370.050413661889 Fold 1 out of 2 training... Fold 2 out of 2 training... Selected lambda for incidence: 0.054 Selected lambda for latency: 0.054 Maximum C-statistic: 0.703222725537594 Fitting a final model... Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 Mixture cure model fit using the EM algorithm using cross-validation Number of non-zero incidence covariates: 3 Number of non-zero latency covariates: 26 [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test-formula.R:11:3'): formula function works correctly ───────────── Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent. Backtrace: ▆ 1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3 2. └─testthat:::check_character(failure_message) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-logLik.R:11:3'): logLik function works correctly ─────────────── Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object. Backtrace: ▆ 1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) ── Error ('test-nobs.R:11:3'): nobs function works correctly ─────────────────── Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60. Backtrace: ▆ 1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3 2. └─testthat:::check_bool(ok) 3. └─testthat:::stop_input_type(...) 4. └─rlang::abort(message, ..., call = call, arg = arg) [ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ] Error: ! Test failures. Execution halted Flavor: r-oldrel-windows-x86_64

Package ordinalbayes

Current CRAN status: OK: 13

Package ordinalgmifs

Current CRAN status: OK: 13

Additional issues

rchk

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.