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Abstract

Obtaining realistic scenarios for the distribution of key economic variables is crucial
for econometricians, policy-makers, and financial analysts. The FARS package provides
a comprehensive framework in R for modeling and designing economic scenarios based
on distributions derived from multi-level dynamic factor models (ML-DFMs) and factor-
augmented quantile regressions (FA-QRs). The package enables users to: (i) extract
global and block-specific factors using a flexible multi-level factor structure; (ii) compute
asymptotically valid confidence regions for the estimated factors, accounting for uncer-
tainty in the factor loadings; (iii) estimate FA-QRs; (iv) recover full predictive conditional
densities from quantile forecasts; and (v) estimate the conditional density when the fac-
tors are stressed.

Keywords: Multi-level dynamic factor model, Quantile regression, Scenario analysis, R.

1. Introduction
There is a growing interest in developing new econometric tools to create extreme scenarios
for the distribution of economic and financial variables. Constructing such scenarios can help
understand the resilience of economic systems by providing early warning signals of what
to expect should such conditions materialize in adverse outlooks. In pursuit of this goal,
González-Rivera, Rodríguez-Caballero, and Ruiz (2024) propose a methodology to obtain
stressed densities of target variables by combining three procedures: i) fitting dynamic factor
models, ii) applying subsampling methods, and iii) estimating factor-augmented quantile
regressions.
The methodology assumes that underlying economic and/or financial latent factors drive the
density of the target variable. A dynamic factor model (DFM) extracts such unobservable
components from a large set of potential predictors. The preferred estimation method is
Principal Components (PC); see, for example, Bai (2003) and Bai and Ng (2013) for technical
details. Over the last few decades, the DFM has been generalized in several directions to
accommodate economic and financial applications more effectively. In particular, multi-level
DFMs (ML-DFMs) have been used to extract latent factors from predictors grouped into
blocks.
The factor structure of the ML-DFM allows for pervasive (or global) factors that are common
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across all variables in the system, as well as block-specific (or regional) factors associated with
one or more blocks. The model can incorporate either non-overlapping blocks of variables, as
in Breitung and Eickmeier (2016), or overlapping blocks, as proposed by Rodríguez-Caballero
and Caporin (2019). Given its flexible structure, factor extraction in ML-DFMs is often based
on the sequential least squares (LS) method, initially proposed by Breitung and Eickmeier
(2016).
Once the latent factors have been extracted, the next step involves generating stressed scenar-
ios (or stressed factors) for the conditional densities. To this end, the methodology proposed
by González-Rivera, Maldonado, and Ruiz (2019) is employed. Under unexpected and rare
circumstances, the factors driving the distribution of the variable of interest are under stress
and, thus, deviate substantially from their averages. Stressed factors are probabilistically
derived based on their multidimensional distribution, focusing on the observations located in
the extreme autocontours of this distribution.
Finally, similarly to Adrian, Boyarchenko, and Giannone (2019), the quantiles of the distribu-
tion of the target variable can be estimated by fitting factor-augmented quantile regressions
(FA-QRs) with the estimated (stressed or unstressed) factors as regressors. Then, following
Azzalini and Capitanio (2003), the corresponding h-step-ahead conditional density is obtained
using the estimated quantiles together with a skew-t distribution. This density delivers any
quantile of interest in the absence of stress conditions; that is, when the underlying factors
are around their averages.
This paper presents the FARS package, which provides a comprehensive framework in R
for modeling and forecasting conditional densities based on ML-DFM and FA-QRs.1 The
package enables users to: i) extract pervasive, semipervasive, and block-specific factors using
a flexible multi-level factor structure; ii) compute asymptotically valid confidence regions for
the estimated factors, accounting for uncertainty in the factor loadings; iii) estimate FA-QRs;
iv) recover full predictive conditional densities from these quantile forecasts; and v) estimate
the density when the factors are stressed. The functionalities of the package are illustrated
by building scenarios for the density of U.S. growth, as in González-Rivera et al. (2024).
Some alternative implementations of DFMs are available in the R programming language.
The sparseDFM package implements popular estimation methods for DFMs, including the
recent Sparse DFM approach by Mosley, Chan, and Gibberd (2024); see Mosley, Chan, and
Gibberd (2023). The MARSS, KFAS packages provide a flexible framework for modeling
DFMs within state-space structures (Holmes, Ward, Scheuerell, and Wills (2023) and Helske
(2017)). Furthermore, the dfms package offers a broad suite of DFM estimation techniques
under the assumption of independent and identically distributed (i.i.d.) idiosyncratic com-
ponents (Krantz, Bagdziunas, Tikka, and Holmes 2025). In contrast, implementations of
ML-DFM remain scarce. To the best of our knowledge, the only available package in R is
GCCfactor, which supports model selection, estimation, bootstrap inference, and simulation
for the model (see Lin and Shin (2023)). Nevertheless, the case of overlapping-block ML-
DFMs based on PC and generalized canonical correlation (CC) estimation techniques is not
supported by any existing package to date.
The rest of this paper is organized as follows. The methodology is briefly described in Section
2. Section 3 describes the code. Section 4 is devoted to illustrating the capabilities of the
FARS package in the context of estimating the conditional density of economic growth in

1Version 0.5.0 of the FARS package is available on CRAN: https://CRAN.R-project.org/package=FARS.
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the US as a function of underlying domestic and international factors. Finally, Section 5
concludes with a summary.

2. Methodology
In this section, we provide a brief description of the methodology for obtaining conditional
density forecasts of the target variable under standard economic dynamics and stressed sce-
narios of the underlying factors. The section is structured in three parts. First, we discuss
the factor structures involved in our specifications: DFM and ML-DFM with and without
overlapping blocks. Second, we explain two methods for estimating the asymptotic multidi-
mensional distribution of the estimated factors, assuming that idiosyncratic components are
either cross-sectionally uncorrelated or weakly correlated. Third, we describe the procedure
for obtaining full-density forecasts for the target variable under both stressed and non-stressed
scenarios using FA-QRs.

2.1. Dynamic Factor Model (DFM)

The DFM has been extensively studied in the literature to reduce the dimensionality of large
sets of variables by assuming that they can be represented by a relatively small number of
common underlying factors; see, for example, Stock and Watson (2002a,b), Bai (2003), and
Bai and Ng (2013). Consider Xt = (x1t, ..., xNt)′, the N × 1 vector of weakly stationary
variables at time t = 1, ..., T . The DFM is given by

Xt = PFt + ϵt, (1)

where P = (p′
1, ..., p′

N )′ is the N × r matrix of factor loadings, Ft = (F1t, . . . , Frt)′ is an
r × 1 vector of latent factors, and ϵt = (ϵ1t, ..., ϵNt)′ is the N × 1 vector of idiosyncratic
components, which are assumed to be cross-sectionally weakly correlated, and uncorrelated
with the common factors Ft. Ft and ϵt are weakly stationary processes. Finally, the number
of factors, r, is known.
The identification condition in (1) is standard in the literature. It assumes that 1

T F ′F = Ir,
and that 1

N P ′P is a diagonal matrix with distinct elements on the main diagonal, ordered
from largest to smallest. Under these restrictions, the estimated factors are identified up to a
sign transformation; see Bai and Ng (2013) for further details in the context of PC estimation.
In practice, the factors are often estimated using PC. Let X = (X1, . . . , XT )′ denote the
T × N matrix of observed data. The PC-estimated factors, F̂t, are obtained as

√
T times the

eigenvectors associated with the r largest eigenvalues of the matrix XX ′, ordered in decreasing
magnitude. The corresponding loading matrix is then estimated by P ′ = 1

T F ′X.

2.2. Multi-level Dynamic Factor Model (ML-DFM)

In many economic or financial applications, the variables in Xt are naturally grouped into
blocks, such as countries, geographical regions, or economic sectors. In some cases, not all
variables in Xt load onto all factors in the DFM, which implies the presence of zeros in P .
The standard PC approach is suboptimal in this context, as it neglects the block structure.
Consequently, when the block structure is known, a more appropriate approach is to extract
the factors from a ML-DFM, where the relevant zero restrictions are imposed directly on
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P . In what follows, we present two alternative specifications of the ML-DFM, depending on
whether the blocks of variables overlap.

ML-DFM without overlapping blocks

Breitung and Eickmeier (2016) propose the following ML-DFM with non-overlapping blocks.
Denote by Xk,t the N × 1 2 vector of variables within block k = 1, ..., K such that Xt =
(X1,t, ..., XK,t)′ with a total cross-sectional dimension of N × K. The specification is as
follows.

X1,·t
...

XK,·t

 =


µ1 λ1 0 . . . 0
µ2 0 λ2 . . . 0
... 0 . . . 0

µK 0 0 . . . λK




Gt

F1,t

F2,t
...

FK,t

+

 ϵ1,·t
...

ϵK,·t

 , (2)

Xt = P ∗F ∗
t + ϵt,

where F ∗
t =

(
G′

t, F ′
1,t, . . . , F ′

K,t

)′
and P ∗ = [Mk, Λk]. Gt = (G1,t, . . . , GrG,t)′ is the rG × 1 vec-

tor of pervasive factors, which load on all variables in the system while Fk,t = (F1,t, . . . , Frk,t)′

is the rk × 1 vector of block-specific factors, which load only within the block Xk,t. The load-
ing matrix and the idiosyncratic noise are defined conformably; see Breitung and Eickmeier
(2016) and Choi, Kim, Kim, and Kwark (2018) for further technical details and identification
conditions.

ML-DFM with overlapping blocks

For clarity of exposition of the ML-DFM with overlapping blocks, consider the case with
K = 3; see Rodríguez-Caballero and Caporin (2019) for a detailed description.3 Assume
the presence of pervasive factors, Gt, and block-specific factors, Fk,t =

(
F

′
1,t, F

′
2,t, F

′
3,t

)′

, as
described earlier. In addition to these, a general factor structure may also include pairwise
(or semipervasive) factors, Fkj,t =

(
F

′
12,t, F

′
13,t, F

′
23,t

)′

. For instance, the factor F12,t loads
only on the variables in blocks X1,t and X2,t; that is, the semipervasive factor captures the
commonality only between blocks 1 and 2 without any dependence on block 3. This type of
factor structure is illustrated in Figure 1, which visually represents the relationships between
pervasive, semipervasive, and block-specific factors.
The model is written as

xk,it = µ′
k,iGt + κ′

kji
Fkj,t + λ′

k,iFk,t + ϵk,it,

where k = 1, 2, 3 indicates the block, index i = 1, . . . , N denotes the i′th cross-section unit of
block k, t = 1, . . . , T is the time dimension, and kj means interaction between blocks k and

2To simplify notation, we assume that every block of data has the same cross-sectional dimension; nev-
ertheless, in practical situations, such dimensions may vary. In this sense, if Nk denotes the cross-sectional
dimensional of the Block k, the total number of cross-sectional units in the model is N = N1 + N2 + · · · + Nk.

3The ML-DFM in (3) can be extended to more than three blocks. The FARS package supports K > 3
blocks, including triple-wise (and higher-order) interactions. However, the computational burden naturally
increases when the number of blocks and/or the order of interactions increases.
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j ∈ 1, 2, . . . , k with k ̸= j. µk,i, κkji
, and λk,i are the rG, rFkj

, and rFk
- dimensional factor

loadings. The number of pervasive, pairwise, and block-specific factors can naturally vary in
each block k. The idiosyncratic term denoted by ϵk,it satisfies the standard assumptions of
the DFM previously introduced.
The three-block ML-DFM with overlapping blocks can be rewritten as

X1,·t
X2,·t
X3,·t

 =

µ1 κ121 κ131 0 λ1 0 0
µ2 κ122 0 κ232 0 λ2 0
µ3 0 κ133 κ233 0 0 λ3





Gt

F12,t

F13,t

F23,t

F1,t

F2,t

F3,t


+

ϵ1,·t
ϵ2,·t
ϵ3,·t

 , (3)

Xt = P ∗F ∗
t + ϵt,

where F ∗
t =

(
G′

t, F ′
12,t, F ′

13,t, F ′
23,t, F ′

1,t, F ′
2,t, F ′

3,t

)′
and Λ∗ = [Mk, Kk, Λk]. Note that the total

number of unobservable common factors involved in (3) is rG + rF12 + rF13 + rF23 + rF1 +
rF2 + rF3 . Hallin and Liška (2011) and Ergemen and Rodríguez-Caballero (2023) propose a
simple methodology based on the inclusion-exclusion principle from set theory to determine
the number of pervasive, semipervasive and block-specific factors.

Figure 1: Factor structure formed by three different overlapping blocks of data.

Sequential least squares estimation

Estimation of the ML-DFM is based on the sequential approach proposed by Breitung and
Eickmeier (2016) in which the main goal is to minimize the following residual sums of squares
(RSS) function:

S(F̂t, P̂ ) =
T∑

t=1

(
Xt − P̂ F̂t

)′ (
Xt − P̂ F̂t

)
, (4)

by a sequence of LS regressions. The algorithm can be executed for the general case of K
blocks with overlapping factors as follows:

1. Obtain the initial values of the factors as follows:
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(a) Employ canonical correlation analysis (CCA) on Xk,t to obtain initial estimates of
the global factor, Ĝ(0) =

(
Ĝ

(0)
1 , Ĝ

(0)
2 , . . . , Ĝ

(0)
T

)′
.

(b) Filter out the global component by regressing Xk,t on Ĝ(0), and get the correspond-
ing residuals, X

∗(0)
k,t , from each of the K separate regressions.

(c) Employ CCA on X
∗(0)
k,t to obtain the following lower-level factors, selecting the

corresponding blocks.

(d) Regress X
∗(0)
k,t on the respective lower-level factors involved and get the residuals.

(e) Steps c) and d) are executed sequentially until the initial estimates of the pair-
wise block factors are obtained. Denote by X

∗∗(0)
k,it the residuals after filtering the

pairwise factors of each block k.

(f) Run PC on X
∗∗(0)
k,t to get the specific-block factors F̂ (0) =

(
F̂

(0)
1,t , F̂

(0)
2,t , . . . , F̂

(0)
k,t

)′
.

(g) The initial matrix of loadings, P̂ (0), is estimated through time-series regressions
of Xk,t on the global factors, X∗

k,t on the semi-pervasive factors, and X∗∗
k,t on the

non-pervasive factors.

2. Updated estimates for the unobservable factors F̂ (1) are obtained by LS regression of
Xk,t on P̂ (0) as follows F̂ (1) =

(
P̂ (0)′

P̂ (0)
)−1

P̂ (0)′
Xk,t.

3. The updated factors F̂ (1) are used to obtain the associated loadings matrix, P̂ (1), as in
Step 1.

4. Steps 2 and 3 are repeated until the RSS converges to a minimum, from which F̂ ∗ and
P̂ ∗ are obtained.

As can be seen, the algorithm does not impose any normalization step. Henceforth, even
though the vector of common components P ∗F ∗

t is consistently estimated and just-identified,
the factor and loading matrices themselves are not separately identified; they can only be
estimated consistently up to a rotation of the factor space.
Breitung and Eickmeier (2016) adapt the standard normalization step in PC analysis to
separately identify P ∗ and F ∗

t . The first step requires orthogonalizing the different levels
of estimated factors (pervasive, pairwise, and block-specific) with respect to one another.
A practical implementation consists of recursively regressing each factor on the previously
ordered ones and using the residuals as updated, orthogonalized estimates. For instance,
block-specific factors can be regressed on pairwise factors, and the resulting residuals can
then be regressed on pervasive factors. Since each regression corresponds to a projection
operation, this sequential procedure is equivalent to applying the Gram-Schmidt orthogonal-
ization process to the vector of estimated factors F ∗

t , following a predetermined ordering.4
Finally, the normalized pervasive factors are obtained as the top rG principal components of

4This sequential orthogonalization procedure, though operationally implemented through regressions, re-
flects the structure of the Gram-Schmidt process and leverages the projection logic underpinning the famous
Frisch–Waugh–Lovell (FWL) theorem in regression analysis. While we are not estimating coefficients, the
residuals obtained from regressing one factor level on another correspond to their orthogonal components, as
in the FWL decomposition.
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the estimated common components. These are derived from the nonzero eigenvalues and the
corresponding eigenvectors of the matrix

M̂

(
1
T

T∑
t=1

ĜtĜ
′
t

)
M̂ ′.

The same normalization procedure can be applied to the semipervasive and block-specific
factors, using the sample covariance matrices of their respective common components.
As explained earlier, the algorithm requires a suitable initialization of P ∗ and F ∗

t . The
FARS package provides two initialization options: CCA and, alternatively, PC. While both
approaches yield approximately the same estimated common components P ∗F ∗

t , CCA typ-
ically leads to faster convergence, requiring fewer iterations to minimize the RSS. However,
when the factor structure is highly complex, initializing with PC tends to be computationally
more efficient. See also Breitung and Eickmeier (2016) for the small sample properties of the
sequential LS estimator with CCA and PC for the two-level DFM.

2.3. Probability distribution of factors

Constructing probabilistic scenarios requires knowledge of the joint distribution of the unob-
servable factors. The asymptotic distribution of such factors obtained from the DFM by PCA
in (1) is derived by Bai (2003). He shows that if F ′F

T = Ir and
√

N
T → 0 when N, T → ∞, the

asymptotic distribution of F̂t, at each moment, t, is given by

√
N
(
F̂t − Ft

)
d→ N

(
0, Σ−1

P ΓtΣ−1
P

)
, (5)

where ΣP = limN→∞
P ′P
N and Γt = limN→∞

∑N
i=1

∑N
j=1 pip

′
jE(εitεjt) with pi and εit being

defined as in the DFM in (1). The finite sample approximation of the asymptotic covariance
matrix of F̂t can be estimated as follows:

MSEt =
(

P̂ ′P̂

N

)−1 Γ̂t

N

(
P̂ ′P̂

N

)−1

, (6)

where Γ̂t is a consistent estimator for Γt. Under the assumption of cross-sectionally uncorre-
lated idiosyncratic components, Bai and Ng (2006) propose the following estimator:

Γ̂BN
t = 1

N

N∑
i=1

p̂ip̂
′
iε̂

2
it, (7)

where ε̂it = xit − p̂
′
iF̂t are the residuals from the DFM model.

In many empirical settings, assuming that the idiosyncratic covariance matrix Σϵ is diagonal
imposes a stringent restriction that may not hold in practice. Therefore, alternatively, we can
relax this assumption and allow the idiosyncratic components to be weakly cross-sectionally
correlated. Under those circumstances, Γt can be consistently estimated as proposed by
Fresoli, Poncela, and Ruiz (2024) by using adaptive thresholding of the sample covariances of
the idiosyncratic residuals, σ̂ij , as follows:

Γ̃F P R = 1
N

N∑
i=1

N∑
j=1

p̂ip̂
′
j

1
T

T∑
t=1

ε̂itε̂jtI (| σ̂ij |≥ cij) , (8)



8 Factor Augmented Regression Scenarios in R

where I()̇ is the indicator function that takes value one when the argument is true and
zero otherwise, and cij = δωNT

[
V̂ ar [ε̂itε̂jt]

]1/2
, with V̂ ar [ε̂itε̂jt] = 1

T

∑T
t=1 [ε̂itε̂jt − σ̂ij ]2,

ωNT = 1√
N

+
√

log(N)
T , and δ chosen as proposed by Qiu and Liyanage (2019).

It is important to note that the estimator of Γt in (8) requires stationarity and, consequently,
is constant over time. However, the estimator in (7), which does not require stationarity, may
not be adequate for moderate levels of cross-sectional idiosyncratic correlation.
The asymptotic covariance matrix estimated as in (6) does not account for the uncertainty
arising from the estimation of the loading matrix, regardless of whether Γt is obtained from
(7) or (8). In this light, Maldonado and Ruiz (2021) propose a correction of the asymptotic
MSE based on subsampling in the cross-sectional space subsets of series of size N∗ < N ,
with each series in the subsample containing all temporal observations. For each subsample,
the loadings and factors are estimated by PC, obtaining F̂

∗(s)
t and P̂ ∗(s), for s = 1, ..., S.

The corrected finite sample approximation of the asymptotic MSE of F̂t can be estimated as
follows:

MSE∗
t = 1

N

(
P̂ ′P̂

N

)−1

Γ̂t

(
P̂ ′P̂

N

)−1

+ N∗

NS

S∑
s=1

((
F̂

∗(s)
t − F̂t

) (
F̂

∗(s)
t − F̂t

)′
)

, (9)

where Γ̂t can be estimated as in (7) or in (8).
Based on the asymptotic normality result in (5), Maldonado and Ruiz (2021) construct con-
fidence ellipsoids for the estimated factors with coverage probability 100 × α% as follows:

g(Ft, α) = {Ft ∈ IRr|(Ft − F̂t)MSE∗−1
t (Ft − F̂t) ≤ χ2

r(α)}, (10)

where χ2
r(α) is the α-quantile of the χ2 distribution with r degrees of freedom, with r being

the number of factors. Each point on the surface of the ellipsoid represents a possible joint
realization of all factors in the DFM. These boundary points correspond to extreme, yet
plausible, stress conditions.

2.4. Density Forecasts Under Stressed and Non-Stressed Conditions

Estimated factors can be used to summarize the information contained in a large set of
predictors Xt, which are used to estimate the temporal evolution of the conditional density of
a target variable. In this subsection, we describe how these densities can be obtained under
both stressed and non-stressed conditions for the underlying factors.
Let yt be the observation at time t of the target variable. We start by obtaining h-step-ahead
forecasts of the τ∗-quantile of the conditional distribution of yt by estimating the following
FA-QR:

qτ∗(yt+h | yt, Ft) = µ(τ∗, h) + ϕ(τ∗, h)yt +
r∑

k=1
βk(τ∗, h)Fkt, (11)

where µ(τ∗, h), ϕ(τ∗, h), and βk(τ∗, h) for k = 1, . . . , r, are parameters, and Ft is the r × 1
vector of the underlying unobserved factors at time t. In practice, the underlying factors in
(11) are replaced by their estimations, F̂t, obtained as described above.
The parameters of the FA-QR model in (11) are estimated using the algorithm by Koenker
and D’Orey (1987), which implements the quantile regression method originally developed
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by Koenker and Bassett (1978). When the error terms are assumed to be independently
distributed according to a Laplace distribution, the estimator coincides with the Maximum
Likelihood (ML) estimator; see Ando and Tsay (2011). Bai and Ng (2008) establishes its
asymptotic normality.
The FA-QR provides estimates of the quantile function of the target variable, q̂τ∗(yt+h|yt, Ft),
for several values of τ∗. In practice, however, it is challenging to map these estimates into a
probability distribution function due to approximation errors and estimation noise. Conse-
quently, as in Adrian et al. (2019), we use the skew-t distribution proposed by Azzalini and
Capitanio (2003) to smooth the quantile function and estimate the conditional density of yt.
The skew-t density depends on four parameters as follows:

f(y; µ, σ, α, v) = 2
σ

st

(
y − µ

σ
; v

)
sT

α
y − µ

σ

√√√√ v + 1

v +
(

y−µ
σ

)2 ; v + 1

 , (12)

where st(·) and sT (·) denote the probability density function and the cumulative distribution
function of the Student’s t distribution, respectively. The skew-t distribution is specified by
its location µ, scale σ, shape α, and fatness v. At each time t, a skew-t distribution is fitted by
choosing the parameters that minimize the squared differences between the quantile estimates
and the skew-t implied quantiles, qτ∗(y; µ, σ, α, v), as follows:

(µ̂t+h, σ̂t+h, α̂t+h, v̂t+h) = argmin
µ,σ,α,v

T −h∑
t=1

(q̂τ∗(yt+h | yt, Ft) − qτ∗(yt; µ, σ, α, v))2. (13)

The methodology described above estimates the conditional density of yt under non-stressed
conditions. To construct conditional densities based on stressed scenarios, González-Rivera
et al. (2019) and González-Rivera et al. (2024) use the confidence ellipsoids defined in (10),
and determine the value of the factors on the α%-contour (stress level of the underlying
factors) that minimize (or maximize) a given quantile (τ) of the conditional distribution of the
target variable. For instance, consider that we are interested in deriving a stress scenario for
τ = 0.05, with the factors stressed at their α% level, FARS solves the following optimization
problem at each moment:

min
F

(S)
t

q̂0.05(yt+h|yt, F
(S)
t ) (14)

s.t. g(F (S)
t , α) = 0,

where g(F (S)
t , α) = 0 is a predetermined α-contour of the factors, that is, an ellipsoid that

contains Ft with probability α.
The values of F

(S)
t on the boundary of the ellipsoid g(F (S)

t , α) = 0 represent extreme events of
the factors. After solving the optimization problem in (14), these optimized values are plugged
into the estimated FA-QRs. The conditional density of yt under stress is then obtained by
smoothing the corresponding quantiles as described in (13).5

5Note that the stressed scenarios are slightly different from that in González-Rivera et al. (2019) and
González-Rivera et al. (2024), who obtain stressed factors for each quantile of the distribution.
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3. The FARS package
In this section, we provide a detailed overview of the FARS package functionalities and explain
how users can implement the methodology described in Section 2 using the available functions.

3.1. ML-DFM in FARS

We begin by introducing the mldfm() function, which provides users with a flexible tool for
extracting factors using either DFM or ML-DFM, with either non-overlapping or overlapping
blocks. In the case of a simple DFM, the function requires two input arguments. The first
is data, which contains the N variables from which the factors are extracted, structured as a
T × N matrix. The second argument is global, which specifies the number of factors r to be
extracted from the data.
In the case of the ML-DFM without overlapping blocks, additional arguments must be pro-
vided to the mldfm function: i) the argument blocks defines the number of blocks K that make
up the data sample (the default is 1, corresponding to the DFM case); ii) block_ind requires
a vector that indicates the indices of the end column for each block k. For example, if K = 3
and N = N1 +N2 +N3, the argument block_ind should contain [N1, N1 +N2, N1 +N2 +N3];
iii) the argument local is a vector of integers, indicating the number of block-specific factors
rFk

to be extracted from each block k; iv) global specifies the number of pervasive factors
rG; v) method defines the factor initialization strategy for the sequential LS estimation: 0 for
the CCA (default) and 1 for PCA6; vi) the arguments tol and max_iter define the tolerance
level and the maximum number of iterations allowed for the RSS minimization process, with
default values set to 10−6 and 1000, respectively.
In the case of the ML-DFM with overlapping blocks, an additional middle_layer argument
must be provided. middle_layer is a named list, where each name is a string specifying a
group of overlapping blocks (e.g. kj in the case of pairwise groups), and each value is the
number of factors rkj to extract from that group. For example, if we want to extract one
pairwise factor from blocks 1 and 3 (r13 = 1), the list should be defined as list("1-3" = 1).
Regardless of the particular specification of the model, the mldfm() function returns an S3
object of class mldfm as output. The object is a list containing several attributes described
in Table 1.

Attribute Description
Factors T × r matrix containing all the extracted factors.
Lambda N × r matrix of factor loadings with necessary zero restrictions.
Residuals T × N residual matrix from the model fit.
Method The initialization strategy used (CCA or PCA).
Iterations Number of iterations performed until convergence (0 in DFM).
Factors_list A summary list indicating the number of factors extracted at each level.

Table 1: Attributes of the mldfm object. The r factors in the Factors and Lambda matrices
follow the hierarchical order (from global to local) described in Factors_list.

The mldfm object has typical S3 methods: print(), summary() and plot(). The first two
functions offer a brief overview of the model estimation outcome, while plot() offers pre-

6PCA is implemented using the prcomp() function from the package stats.



Gian Pietro Bellocca, Ignacio Garrón, Vladimir Rodríguez-Caballero, Esther Ruiz 11

configured visualization tools. The call of the plot function on a mldfm object generates
distinct line charts for all estimated factors, each enriched with confidence interval bands that
assume cross-sectionally independent and homoskedastic idiosyncratic components. Further-
more, an optional input argument dates can be provided. dates is a vector of dates to be dis-
played on the x-axis, replacing the default integer time index ranging from 1 to T . Moreover,
using the plot() function, it is possible to visualize estimated loadings or residuals, specifying
a which argument with values "loadings" or "residuals". With "loadings", a singular
figure is generated, which contains a set of bar charts displaying the estimated loadings along
with their corresponding pairwise confidence intervals. Differently, with "residuals", a fig-
ure depicting the correlation heatmap of the residuals is produced. In both cases, the user
can provide a list of variable names using the optional var_names argument. This enables
the replacement of the default indexes from VAR 1 to VAR N with the appropriate variable
names.

3.2. Probability distribution of factors in FARS

A two-step procedure is implemented in FARS to obtain the asymptotic joint probability
density of the factors with the subsampling correction.
The first step involves running a subsampling method to extract factors from subsets of N∗

variables, selected from the entire data sample. This is implemented using the mldfm_subsampling()
function. The function iteratively generates n_samples subsamples of size sample_size and
estimates factors using the ML-DFM approach through the mldfm() function7. This approach
offers two main advantages. First, the arguments of mldfm_subsampling() are the same as
those of mldfm(), with the addition of two additional arguments to define the number and size
of the subsamples. Second, the function returns a list of mldfm objects, enabling the user to
apply standard methods such as summary(), print(), and plot() to each of the subsample
results. In addition, an optional seed argument can be provided to ensure the reproducibility
of the results.
The second step involves constructing confidence regions for the factors, as outlined in equa-
tion (10). This operation is performed by the create_scenario() function, which requires
three main arguments. The first is model, which contains the result of the mldfm() function
applied to the full dataset and serves as the center of the ellipsoid. The second is subsample,
which takes the output of mldfm_subsampling(), a list of mldfm objects obtained from each
subsample, and uses it to compute the MSE correction as defined in Equation (9). The third
is alpha, which defines the coverage probability (i.e., the level of stress) for the ellipsoids.
An optional argument, atcsr, can be set to TRUE to estimate the asymptotic MSE of the
factors using Γ̃FPR as defined in equation (8). Differently, the default setup (FALSE) uses
Γ̂BN

t as described in Equation (7). The output of create_scenario() is a list of T matrices
of size z × r representing the ellipsoid points in r dimensions for each time observation t.
The number of points z depends on the number of dimensions r. In the case of only one
factor (r = 1), only a confidence interval is built based on the specified alpha level; for this
reason, z = 2 (i.e., the upper and the lower bounds). In the case of two dimensions (r = 2),
the 2-D ellipsoid is composed of z = 300 points and is built using the ellipse package; see

7The argument n_samples is the number of samples, while sample_size is the proportion of the cross-
sectional dimension, N , that composes the subsamples (e.g., 0.9 to selected 90% of the original variables). In
the case of multiple blocks, the proportion is maintained in all the blocks.
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Murdoch and Chow (2023). Lastly, in the case of more than two dimensions (r > 2), the r-D
ellipsoid is generated through the hyperellipsoid() and hypercube_mesh() functions from
the SyScSelection package (Kopfmann 2023). In this case, the number of points composing
the ellipsoid depends on the phi parameter of the hypercube_mesh() function, which defines
the scalar fineness of the mesh. In FARS, phi is set to 8.

3.3. Conditional Density Under Stressed and Non-Stressed Conditions in
FARS
In this section, we present the tools provided by FARS for obtaining conditional density
forecasts in both the non-stressed and stressed scenarios.
The first step is to estimate the FA-QRs8. This operation is performed through the compute_fars()
function, which estimates the parameter of the FA-QR in Equation (11). In the non-stressed
setup, the function requires only three arguments to work. First, dep_variable, which con-
tains the dependent variable y. Second, factors, which includes the factors the user wants
to add to the quantile regression model.9 Third, h, which defines the forecast horizon (the
default is h = 1). The function estimates the FA-QRs for a fixed set of quantiles: 0.05, 0.25,
0.50, 0.75, and 0.95, as these are later used for the skew-t density fit. Alternatively, the user
can modify the extreme quantiles by setting an optional edge argument. For example, setting
edge = 0.01 forces the edge quantiles to 0.01 and 0.99. The default value is 0.05. In the
stressed scenario setup, additional arguments are required. The scenario argument takes
the list of ellipsoids produced by the create_scenario() function. Moreover, the user must
define QTAU and min, which correspond to the quantile that will be minimized or maximized,
and the optimization strategy used to compute stressed factors over the ellipsoid points. The
default value for min is TRUE, which means that the objective is to minimize a given quantile
of the target variable y. Differently, if min value is FALSE, the objective is to maximize the
quantile of y. The output of compute_fars() is an S3 object of type fars, which contains a
set of attributes listed in Table 2.

Attribute Description
Quantiles T × 5 matrix containing the estimated quantiles.
Coeff (r + 2) × 5 matrix containing the estimated coeffcients.
StdError (r + 2) × 5 matrix containing the estimated standard errors.
Pvalue (r + 2) × 5 matrix containing the estimated standard P-values.
Levels The list of estimated quantiles.
QTAU* The quantile selected for the min/max procedure.
Stressed_Factors* T × r matrix containing the stressed factors.
Stressed_Quantiles* T × 5 matrix containing the estimated stressed quantiles.

Table 2: Attributes of the fars object. Attributes marked with * are included only if the
user provides the necessary argument for the stressed scenario case.

Like the mldfm object, the fars object has standard S3 methods. The print() function
8FARS estimate FA-QRs using the quantreg package (Koenker, Portnoy, Ng, Zeileis, Grosjean, and Ripley

2025). The standard deviations of the estimated parameters are calculated using the sandwich formula proposed
by Powell (1989) under the option ker, which is commonly used in practice.

9These can be easily accessed through the Factors attribute of the mldfm object obtained after estimating
the ML-DFM by mldfm().
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provides a brief overview of the FA-QRs. The summary() function returns a detailed summary
of quantile regression, including estimated coefficients, standard errors, and p-values for each
quantile. Lastly, the plot() function generates two line charts: one composed of non-stressed
quantiles and the second of stressed scenario quantiles. The function can display customized
dates on the x-axis by setting the corresponding optional argument dates.
The second step to obtaining a density forecast is to estimate the conditional density of
the target variable y by fitting a skewed-t distribution. This operation is performed via
the compute_density() function, which requires a quantiles argument, containing the
quantiles estimated by the compute_fars() function10. Depending on the quantiles pro-
vided, Quantiles or Stressed_Quantiles, the density function returns the non-stressed
or the stressed conditional density, respectively. Additional arguments can be provided to
compute_density(), including est_points, which set the number of estimation points (de-
fault is 512), random_samples, which define the number of random samples to be drawn
from the estimated distribution (default is 5000) and support, which select the lower and
upper bounds of the random variable support (default is c(-10,10)). For each period t,
compute_density() initializes the skewed-t distribution by setting three parameters (loca-
tion, scale, and shape) using the quantile values provided as input. The function implements
two optimization procedures to fit the skew-t distribution. The default is a linear optimization
using optim() from stats, which implements the L-BFGS-B method. The second is a non-linear
optimization method that can be selected by setting the argument nl = TRUE. The non-linear
method is from the nloptr package and is based on NLOPT_LN_SBPLX (Johnson (2007)). In
both cases, the theoretical quantiles and the probability distribution function (pdf) of the
fitted skewed-t distribution are computed using qst() and dst() from sn (Azzalini (2023)),
respectively. Finally, a seed argument can be provided to ensure the reproducibility of the
results. The compute_density() function returns a fars_density object which provides the
attributes listed in Table 3.

Attribute Description
density The estimated densities at time t.
distribution The random draws from the fitted skew-t distribution at each t.
optimization The optimization method implemented: linear or non-linear.
x_vals The sequence of evaluation points used to compute the density.

Table 3: Attributes of the fars_density object. Both density and distribution are
provided in matrix form with one row for each time t.

The fars_density object is equipped with standard S3 methods. The print() function
provides a brief overview of the estimated density. The summary() function returns the
mean, median, and standard deviation of the distribution at time t. Finally, the plot()
function generates a 3D plot of the density, with evaluation points (x_vals) on the x-axis,
time indices on the y-axis, and density values on the z-axis. The function can also display
custom dates on the y-axis by setting the optional argument time_index.
The final step in obtaining a conditional density forecast is to extract the conditional quan-
tile from the estimated skew-t distribution. This can be performed using the function

10If the quantiles computed with compute_fars() have been modified via the edge argument, the density
function must be informed of the correct quantiles levels. This can be done by setting the levels argument
using the $Levels attribute of the fars object returned by compute_fars().
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quantile_risk(). This function requires two parameters: an object of class fars_density
and the quantile that must be extracted QTAU. The quantile extraction is implemented via
quantile() from stats. Depending on the fars_density object provided, either a non-
stressed or a stressed density, the quantile_risk() extracts a non-stressed quantile or a
stressed quantile of the target variable (e.g., in the case of GDP growth with QTAU = 0.05
(T = 59), it extracts Growth-at-Risk or Growth-in-Stress).
Figure 2 shows a recap of the FARS package workflow for both the non-stressed and the
stressed scenarios.

4. An application to conditional density of growth in the US economy
In this section, we illustrate the functionalities of the FARS package by building scenarios
for US growth as in González-Rivera et al. (2024). In this exercise, we implement an ML-
DFM using a data sample composed of three blocks. The first block contains N1 = 63
global macroeconomic variables (GDP growth for 63 countries), the second block contains
N2 = 248 domestic macroeconomic variables, and the third block contains N3 = 208 global
financial variables, observed quarterly from 2005Q3 to 2020Q1. The dependent variable is
the annualized quarterly GDP growth for the US. Data are retrieved from the replication files
of González-Rivera et al. (2024).
The first step is to install and load the package. FARS is available to the public on CRAN
under the GPL-3 license and can be downloaded as follows:

R> install.packages("FARS")

The development version is available on GitHub at https://github.com/GPEBellocca/FARS.
This can be downloaded using the devtools package with the following command:

R> devtools::install_github("GPEBellocca/FARS")

After installing the package from CRAN or GitHub, the package should be loaded as follows:

R> library(FARS)

The dataset, composed of N = N1 + N2 + N3 = 519 variables, is stored in the data matrix,
while the US GDP growth is stored in dep_variable. To estimate an ML-DFM through
mldfm(), we first need to decide how many factors to extract from each block. Following
González-Rivera et al. (2024), we extract a global factor from the three blocks, a pairwise
factor from the global macroeconomic and global financial blocks (1 and 3), and one local
factor from each of the three blocks. This operation is performed as follows:

R> mldfm_result <- mldfm(data,
+ blocks = 3,
+ block_ind = c(63,311,519),
+ global = 1,
+ local = c(1,1,1),
+ middle_layer = list("1-3" = 1))

https://github.com/GPEBellocca/FARS
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Since we are not providing any method, tol, and max_iter, the default values are enforced.
The mldfm object returned is stored in the mldfm_result variable. After completion, the
function summary() can be used to display an overview of the estimated ML-DFM, includ-
ing the number of factors extracted at each level of the hierarchical structure used in the
Sequential LS estimation.

R> summary(mldfm_result)

Summary of Multilevel Dynamic Factor Model (MLDFM)
===================================================
Number of periods: 59
Number of factors: 5
Number of nodes: 5
Initialization method: CCA
Number of iterations to converge: 47

Number of factors per node:
- 1-2-3 : 1 factor(s)
- 1-3 : 1 factor(s)
- 1 : 1 factor(s)
- 2 : 1 factor(s)
- 3 : 1 factor(s)

Residual sum of squares (RSS): 15215.6724
Average RSS per period: 257.8928

Additionally, using plot(), it is possible to obtain a graphical representation of the estimated
factors, loadings, and residuals. For illustration, we extract two factors from the global
macroeconomic block of variables as follows:

R> mldfm_result_gm <- mldfm(data = data[, 1:63], blocks = 1, global = 2)

Then, we call the plot function three times to plot the estimated factors, loadings, and
residuals, in sequence. For a more precise result, we provide the plot function with appropriate
arrays composed of dates and variable names using the optional arguments.

R> plot(mldfm_result_gm, dates = dates)
R> plot(mldfm_result_gm, which = "loadings", var_names = var_names)
R> plot(mldfm_result_gm, which = "residuals", var_names = var_names)

The results are plotted in Figures 3, 4 and 5, respectively. After estimating the ML-DFM we
can now build the non-stressed and stressed scenarios following the steps depicted in Figure 2.

4.1. Non-stressed scenario

The first step to build the unstressed scenario is to estimate the FA-QRs as follow:11

11For this task, we consider the simplest case with h=1
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R> fars_result <- compute_fars(dep_variable, mldfm_result$Factors, h = 1)

Running Factor-Augmented Quantile Regressions (FA-QRs)...
Completed

After this, we can plot the quantiles for the non-stressed scenario (see Figure 6, panel a) and
print a recap of the FA-QRs.

R> plot(fars_result,dates=dates)
R> print(fars_result)

Factor-Augmented Quantile Regressions (FARS)
===========================================
Forecasted quantiles:
- Number of periods: 59
- Quantile levels: 0.05 0.25 0.50 0.75 0.95

Stressed quantiles: NO

The results stored in fars_result are then used to fit a skew-t distribution, generating the
density for the non-stressed scenario based on fars_result$Quantiles. This is done by
applying the default linear optimization method and providing an appropriate support for
our GDP growth case.

R> ns_density <- compute_density(fars_result$Quantiles, support = c(-30,10), seed = 42)

Estimating skew-t densities from forecasted quantiles...
Completed

The generated fars_density object can be used to plot the non-stressed density (see Figure
7, panel a) and visualize an overview of the density estimation.

R> plot(ns_density, time_index = dates)
R> print(ns_density)

FARS Density
====================
Time observations : 59
Estimation points : 512
Random samples : 5000
Support range : [ -30 , 10 ]
Optimization : Linear

Finally, we estimate the GaR at QTAU = 0.01 applying the quantile_risk() function to
the non-stressed density.
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R> GaR <- quantile_risk(ns_density, QTAU = 0.01)

4.2. Stressed scenario

As explained in Section 3, the computation of the stressed scenario can be performed in two
steps. First, we need to obtain the asymptotic distribution of the factors. For this goal,
we implement the subsampling procedure using the appropriate function. In our case, we
generate 100 samples by extracting 94% of the variables from each block.

R> mldfm_ss_result <- mldfm_subsampling(data,
+ blocks = 3,
+ block_ind = c(63,311,519),
+ global = 1,
+ local = c(1,1,1),
+ middle_layer = list("1-3" = 1),
+ n_samples = 100,
+ sample_size = 0.94,
+ seed = 42)

Generating 100 subsamples...

Subsampling completed.
Number of subsamples generated: 100

Each of the 100 elements stored in mldfm_ss_result list can be manipulated as a distinct
mldfm object. For example, we can visualize the summary of the ML-DFM estimated for
sample number 10.

R> summary(mldfm_ss_result[[10]])

Summary of Multilevel Dynamic Factor Model (MLDFM)
===================================================
Number of periods: 59
Number of factors: 5
Number of nodes: 5
Initialization method: CCA
Number of iterations to converge: 53

Number of factors per node:
- 1-2-3 : 1 factor(s)
- 1-3 : 1 factor(s)
- 1 : 1 factor(s)
- 2 : 1 factor(s)
- 3 : 1 factor(s)

Residual sum of squares (RSS): 14212.7382
Average RSS per period: 240.8939
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The second step to generate the stressed scenario is calling the create_scenario() function.
For this exercise, we consider the highest stress level of alpha = 0.99 and default Γ̂BN

t .

R> scenario <- create_scenario(model = mldfm_result,
+ subsample = mldfm_ss_result,
+ alpha=0.99)

Constructing scenario using 100 subsamples and alpha = 0.99
Using standard time-varying Gamma
...
Scenario construction completed.

Now that we have both our ML-DFM in non-stressed conditions and our stressed scenario,
respectively stored in mldfm_result and scenario variables, we can re-estimate the FA-
QRs. Since we are interested in GDP growth risk, our objective is to minimize the dependent
variable for the chosen quantile (QTAU = 0.01).

R> fars_result <- compute_fars(dep_variable,
+ mldfm_result$Factors,
+ scenario = scenario,
+ h = 1,
+ QTAU = 0.01)

Running Factor-Augmented Quantile Regressions (FA-QRs)...
Completed

The updated fars object stored in fars_result now contains both the non-stressed and
stressed quantiles, which can be visualized by calling the plot function (see Figure 6).

R> plot(fars_result,dates=dates)

As with the non-stressed case, we fit a skew-t distribution using the fars_result$Stressed_Quantiles
matrix to generate the stressed density, which we visualize with the plot function (see Fig-
ure 7, panel b).

R> s_density <- compute_density(fars_result$Stressed_Quantiles, seed = 42)
Estimating skew-t densities from forecasted quantiles...
Completed

The last step is to compute the GiS for QTAU = 0.01 by feeding quantile_risk() with the
stressed densities.

R> GiS <- quantile_risk(s_density, QTAU = 0.01)
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In Figure 8, we plot the final GaR and GiS estimates along with the dependent variables.
As in González-Rivera et al. (2024), we observe that GiS is more negative than GaR. This
negative outcome would be neglected if we only estimated GaR, which assumes that factors
evolve according to an average scenario.
To conclude our replication exercise, we have repeated the analysis at different levels of stress,
alpha, and step-ahead, h. The results obtained for the out-of-sample forecast is reported in
Table 4. Once again, we observe that the GaR estimates are more conservative than the GiS
estimates across all time horizons.

h = 1 h = 2 h = 3 h = 4
2020Q2 2020Q3 2020Q4 2021Q1

Observed -31.20 33.89 4.50 6.30
GaR -24.90 -11.05 -1.19 2.28
GiS(70%) -27.41 -12.41 -2.33 1.97
GiS(95%) -28.28 -12.89 -2.73 1.87
GiS(99%) -28.85 -13.20 -2.99 1.80

Table 4: US growth risk (in annualized percentage over previous quarter). The table reports
h-step-ahead forecasts of the 1% quantile of growth with information up to 2020Q1 and
computed by GaR (without stressing the underlying factors) and by GiS (with factors stressed
at 70%, 95% and 99%).

5. Summary and discussion
The FARS package offers a suite of tools in R for modeling and designing economic scenarios
based on conditional densities derived from multi-level dynamic factor models and factor-
augmented quantile regressions. These tools allow researchers to generate both non-stressed
and stressed scenarios for target variables, such as the US growth density (see, González-
Rivera et al. 2024). The FARS package is available on the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=FARS, including the data matrix
retrieved from the replication files of González-Rivera et al. (2024).
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Figure 2: FARS package workflow for both non-stressed and stressed scenarios.



Gian Pietro Bellocca, Ignacio Garrón, Vladimir Rodríguez-Caballero, Esther Ruiz 25

(a) Factor 1

(b) Factor 2

Figure 3: Line chart of extracted factors.
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(a) Loadings for factor 1

(b) Loadings for factor 2

Figure 4: Bar chart of factor loadings.
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Figure 5: Residual correlation heatmap.
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(a) Non-stressed scenario

(b) Stressed scenario

Figure 6: Non-stressed and stressed scenario quantiles.
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(a) Non-stressed density

(b) Stressed density

Figure 7: Non-stressed and stressed densities.
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Figure 8: US quarterly growth: observed annualized rates in black, 1% GaR in blue and 1%
GiS stressed with α = 99% in red.
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