
 1

yaImpute: An R Package for k-NN Imputation

Nicholas L. Crookston

Rocky Mountain Research Station

USDA Forest Service

ncrookston@fs.fed.us

Andrew Finley

Department of Forest Resources

University of Minnesota

afinley@stat.umn.edu

Date of last revision: December 31, 2006

Abstract: yaImpute is used to impute attributes measured on some observations to

observations where they are not measured. Attributes measured on all observations are

called X-variables and those measured only a subset observations are Y-variables.

Reference observations have X- and Y-variables and target observations have only X-

variables. yaImpute picks k-references that are nearby the targets in an appropriate p-

dimensional space and, when k=1, imputes the Y-variables from the closest reference to

the target (when k>1 other logic is used). How the p-dimensional space is computed

depends on the method used. Relationships among the X-variables are used for some

methods (e.g. Euclidean and Mahalanobis) while the relationships between the X- and Y-

variables within the reference data may be used define the distance measure for other

methods (e.g. most similar neighbor and gradient nearest neighbor). The package also

includes a new method for using the Random Forest regression algorithm to define

distances. Tools that support building the imputations, evaluating the quality of the

imputed results, and applying imputation logic to very large maps are included. The

package is implemented in R.

Keywords: multivariate, imputation, Mahalanobis, Random Forests, correspondence

analysis, canonical correlation, independent component analysis, most similar neighbor,

gradient nearest neighbor, mapping predictions.

Introduction

Imputing missing values to observations is nothing new. Analysts and statisticians use

many strategies for filling in missing information on specific observations so that

subsequent data compilations will be based on reasonable data using methods that assume

the data are complete. Most often, one or two attributes are estimated for an observation

by using information from observations where they are not missing or by using ancillary

data.

 The problem addressed here is a little different. Here, by design, there are many

observations where an entire set of attributes are not measured. An example from forestry

serves to illustrate the problem. Frequently, forested land is mapped into polygons of

suitably similar vegetation and of a reasonable size. Traditionally, the mapping was done

 2

by interpretation of aerial photographs but more recently automated methods of

processing image data have become available. During the mapping process, attributes

about vegetation in each polygon is measured and recorded. However, planning of forest

management activities often requires more detailed information than can be measured

from these relatively inexpensive sources. The additional information is collected by

visiting a sample of polygons on the ground. When the detailed information is needed for

non-sampled polygons, attributes are imputed from those that are ground-examined to

those that are not. A method for doing this kind of imputation was published by Moeur

and Stage (1995) who called it Most Similar Neighbor sampling. Their approach found

neighbors in a canonical space based on the relationship between attributes measured on

all sample units and those derived from the detailed measurements. Later, Crookston and

others (2002) published a Fortran-based program to do the imputation that supports some

additional methods for finding similar neighbors. Others, notably Ohmann and Gregory

(2002) developed another method based on canonical correspondence analysis. Their

interest was focused on doing imputation at the 30 m pixel level in LandSat images but

otherwise they are addressing the same basic problem albeit with a novel ordination

approach. Others have been involved with this work for several years (Korhonen and

Kangas 1997, Holmström et al. 2003, LeMay and Temesgen, 2005).

 As budgets for taking field measurements have continued to fall, and new techniques

of collecting better remotely sensed data have been developed, interest in imputation

methods as described here have increased. Furthermore, alternative distance measures

have been proposed leading to the need to provide a covenant system for testing methods

against each other. The yaImpute package was developed to meet these needs. That it be

open source and in the R (R Development Core Team, 2006) environment appealed to the

author’s sensibilities.

 This document begins with providing a fundamental set of definitions and a simple

example. An overview of the package contents, listing functions and their purposes

follows. Formula and code fragments are provided that illustrate how the distance

calculations are done. The paper closes with a real-world example. However, before we

continue one important point bears stating. The quality of the imputations depends on

many factors; chief among them is that there exists a relationship between the X-

variables and the Y-variables. If there isn’t one, suitably scaled random numbers could be

used. The choice of which method to use and the trade offs as to how to improve results

are topics generally beyond the scope of this document.

Definitions and a Basic Example

We identify attributes measured on all observations as X-variables and attributes

measured on a subset of observations as Y-variables. Reference observations have X- and

Y-variables and target observations have only X-variables. yaImpute picks k-references

that are nearby the target in an appropriate p-dimensional space and, when k=1, imputes

the Y-variables from the closest reference to the target (when k>1 other logic is used).

 Information about the relationship between the X- and Y-variables among the

references is ether ignored or used to condition the measurement of distances between

references and targets, depending on the method used to define the p-dimensional space.

Seven methods for finding neighbors are supported, six of which include the major step

of finding the k minimum sum-of-squared differences in the X-attributes between a target

observation and the reference observations. All methods seek k-NNs, where nearness is

 3

measured by a distance. The methods are listed with details on how the calculations are

done in the section titled Details.

 The famous iris data (Anderson 1935) is used in a simple example. This data includes

5 attributes measured on 150 observations. For this example, we will pretend that

Sepal.Length, Sepal.Width, and Petal.Length, are measured on all observations, and are

therefore our X-variables, while Petal.Width and Species are measured on a subset and

are our Y-variables. The random number seed is set so that you will get the same results

as displayed here if you choose to run the example.

> require(yaImpute)

> data (iris)

> set.seed(1)

> refs=sample(rownames(iris),50)

> x <- iris[,1:3]

> y <- iris[refs,4:5]

Two basic steps are taken for a complete imputation. The first step is to find the

neighbors relationships (function yai) and the second is to actually do the imputations

(function impute). Function yai first classifies observations as reference or targets using

the definitions described above. Function impute is used to actually impute Y-variables

measured on reference observations to target observations. The yaImpute plot function

automatically calls impute and then provides a plot of observed over imputed for the

reference observations, where a reference observation other than itself is used as a near

neighbor (Fig. 1).

> Mahalanobis <- yai(x=x,y=y,method="mahalanobis")

> plot(Mahalanobis)

0.5 1.0 1.5 2.0

0
.5

1
.0

1
.5

2
.0

Imputed

O
b
s
e
rv

e
d

Petal.Width

Imputed

O
b
s
e
rv

e
d

setosa versicolor

s
e
to

s
a

v
e
rs

ic
o
lo

r

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Species

Mahalanobis

Figure 1: Output from running the plot command on the object generated with the simple code.

 4

To see the entire list of imputations (including those for the target observations), the

impute function is used alone. The reference observations appear in the result first, and

the targets at the end of the result. Note that NA’s are returned for the “observed” values

(variable names with a .o appended), for reference observations (details on options

controlling the behavior of the impute function are provided in the manual pages).

> head(impute(Mahalanobis))

 Petal.Width Petal.Width.o Species Species.o

40 0.2 0.2 setosa setosa

56 1.2 1.3 versicolor versicolor

85 1.3 1.5 versicolor versicolor

134 1.6 1.5 versicolor virginica

30 0.2 0.2 setosa setosa

131 2.2 1.9 virginica virginica

> tail(impute(Mahalanobis))

 Petal.Width Petal.Width.o Species Species.o

144 2.2 NA virginica <NA>

145 2.4 NA virginica <NA>

146 2.0 NA virginica <NA>

147 1.6 NA versicolor <NA>

149 2.4 NA virginica <NA>

150 1.8 NA versicolor <NA>

Package Contents

Functions used to find neighbors, output results, and do the imputations:

yai finds k-NNs given reference and, optionally, target observations. This function is

the main function in the package it turns an object of class “yai”, described below.

ann provides access to approximate nearest neighbor search routines and is called by

yai.

impute or impute.yai takes an imputation (object class yai) and an optional list of

variables and returns a data frame of imputed values for specified variables. Observed

values can be requested. In addition, new variables for reference, target, or both

observations, are made for these variables using the neighbor relationships found in

object.

foruse takes an imputation (object class yai) and returns a data frame with k

columns. Row names are target observations identifications and the values are

reference observation identifications for the k neighbors.

newtargets takes an imputation (object class yai) and a data frame of X-variables

for new target observations and finds references for these new observations. A new

yai object is returned.

Functions used to build maps:

 5

AsciiGridImpute finds nearest neighbor reference observation for each point in the

input grid maps and outputs maps of selected Y-variables in a set of output grid maps.

AsciiGridPredict provides an interface to AsciiGridImpute designed for use with

models built using tools other than yai.

Functions used to display and evaluate results.

compare.yai takes several imputations (see yai and impute.yai) and provides a

convenient display of the root mean square differences (see rmsd.yai) between

observed and imputed values. Each column for the returned data frame corresponds to

an imputation method and each row corresponds to a variable.

cor.yai takes an imputation object and computes the correlations between observed

and imputed values. We do not believe correlation should be used to compare

evaluate imputation results but decided to include this function because many people

use correlation and this forum gives us an opportunity to present our position. The

function outputs a warning against its use (see Diagnostics, below).

errorStats computes error statistics as proposed by Stage and Crookston (In press).

mostused returns a list of the most frequently used reference observations.

notablyDistant finds the target observations with relatively large distances from

the closest reference observation. A suitable threshold is used to detect large

distances is either specified or the function computes one.

plot.yai provides a matrix of plots of observed verses imputed for variables in an

object created by impute.yai.

plot.compare.yai provides an informative plot of the data frame created from

compare.yai.

print.yai outputs a summary of yai object (see below).

rmsd.yai takes an imputation object (see yai and impute.yai) and computes the

root mean square difference between observed and imputed values.

Functions that directly support the use of randomForest:

addXlevels adds xlevels to randomForest objects.

yaiRFsummary builds summary data for method randomForest.

yaiVarImp plots Gini importance scores for method randomForest.

 6

whatsMax finds the column that has the maximum value for each row, returns a data

frame with two columns. The first is the column name corresponding to the maximum

and the second is the maximum value.

Miscellaneous functions:

unionDataJoin takes several data frames, matrices, or any combination, and creates

a data frame that has the rows defined by a union of all row names in the arguments

and columns defined by a union of all column names in the arguments. The data are

loaded into this new frame where column and row names match the individual inputs.

Duplicates are tolerated with the last one specified being the one kept. NAs are

returned for combinations of rows and columns where no data exist. A warning is

issued when a column name is found in more than one data source.

vars takes an imputation object (see yai) and returns a list of X-variables by calling

function xvars and a list of Y-variables by calling function yvars.

Data:

TallyLake is data from Tally Lake Ranger District, Flathead National Forest,

Montana, USA.

MoscowMtStJoe is data from the Moscow Mountain area and the St. Joe Woodlands,

northeast of Moscow, Idaho, USA.

Classes:

yai is a list returned by function yai that contains elements as listed in the manual

entry for the package, for of special note here are 2 pairs of data frames. neiDstTrgs

holds the distances between a target observations (identified by row names) and the k

reference observations. There are k columns. neiIdsTrgs is a corresponding data

frame of reference identifications. neiDstRefs and neiIdsRefs are counterparts for

references.

impute.yai is a data frame of imputed values. The row names are target observation

identifications and the columns are variables (X-variables, Y-variables, both, or new

variables supplied by the call to impute.yai). When observed values are included,

additional variables are included that have .o appended as a suffix to the original

name. An attribute is attached with the scaling factors for each variable that is used in

computing scaled rmsd.

compare.yai is a data frame of root mean square differences (scaled) values. Rows

are variables and columns correspond to each imputation result passed as arguments.

Details

 7

yaImpute offeres several methods for finding neighbors. For all methods except

randomForest, which is discussed below, the k nearest neighbors for target observation i

is defined as the set of indexes to the k-minimum distances to reference observations.

Squared distance between observation i and j is defined as:

 d
2

ij = (Xi - Xj) W (Xi - Xj)’

where

Xi is the vector of X-variables for the i
th

 target observation,

Xj is the vector of X-variables for the j
th

 reference observation, and

W is a weight matrix.

Methods differ in how W is defined (Table 1). With method raw distance is computed in

the unaltered X space, with method euclidean distance is computed in a normalized X

space, with method mahalanobis distance is computed in its namesakes space, with

method ica distance is computed in a space defined using Independent Component

Analysis (package fastICA, Marchini et al. 2006), with methods msn and msn2 (Moeur

and Stage 1995, Crookston et al. 2002) distance is computed in projected canonical

spaces, and with method gnn (Ohmann and Gregory 2002) distance is computed using a

projected ordination of X’s found using Canonical Correspondence Analysis (package

vegan, Oksanen et al. 2005). In the last method, randomForest (Breiman 2002, Liaw and

Wiener 2002), observations are considered similar if they tend to end up in the same

terminal nodes in a suitably constructed collection of classification and regression trees.

The distance measure is one minus the proportion of trees where a target observation is in

the same terminal node as a reference observation. Similarly to the other methods, k-NNs

are the k minimum of these distances. Notable advantages of method randomForest are

first that it is non-parametric and second that the attributes can be a mixture of continuous

and categorical variables. The other methods require continuous measures where

categorical variables are transformed to some continuous space. A third advantage is that

the data can be rank-deficient, having many more variables than observations,

colinearities, or both.

 In all methods, finding the exact minimums involves time consuming searches

between every target and all the reference observations. The package includes a much

faster approximate nearest neighbor (ANN) search for use when appropriate and when

the method includes sum-of-squared differences as the distance measure, which is not the

case for method randomForest.

 8

Table 1: Summary of how W is computed.

Method Value of W

Raw Identity matrix, I

Euclidean Inverse of the diagonal variances in X

Mahalanobis Inverse of the covariance matrix in X

ica K Ω ’ K Ω, where Ω corresponds to what fastICA calls W and K is

defined as is done in fastICA.

msn ΓΓΓΓ ΛΛΛΛ
2

ΓΓΓΓ’, where ΓΓΓΓ are the canonical vectors corresponding to the X’s

found by a canonical correlation analysis between X’s and Y’s, and ΛΛΛΛ

are the canonical correlations.

msn2 ΓΓΓΓ ΛΛΛΛ (I - ΛΛΛΛ
2
)
-1

ΛΛΛΛ ΓΓΓΓ’

gnn ΘΘΘΘ, weights assigned to environmental data in canonical

correspondence analysis.
randomForest not applicable

 For methods msn and msn2, a question arises as to the number of canonical vectors to

use in the calculations. One option is for the user to set this number and indeed that can

be done in this package. Another option is to fine those canonical vectors that are

significantly greater than zero and use them all. Rao (1973, p. 556) defined an

approximate F statistic that is the basis for a test of the hypothesis that the current and all

smaller canonical correlations are zero in the population. Gittins (1985, p 57) notes that Λ

varies in the range from zero to one and if the value is sufficiently small the conclusion is

drawn that the X- and Y-variables are linearly dependent. It turns out that if the first row

is linearly dependent, we can test the second, as it is independent of the first. If the

second likelihood ratio is significantly small we conclude that the X- and Y-variables are

linearly dependent in a second canonical dimension. The tests proceed for all non-zero

canonical coefficients until it fails signifying that the number of correlations that are non-

zero in the population corresponds to the last coefficient that past the test. Obviously, the

test requires specification of a p value, set as 0.05 in yai. The yai function contains code

that computes the F statistic following the formulas found in SAS (SAS 2000).

 For method randomForest a distance measure based on Breiman’s (2001) proximity

matrix is used. This matrix has a row and column for every observation (all reference

plus target observations). The elements contain the proportion of trees where

observations are found in the same terminal nodes. Since every observation is in the same

terminal node as itself, the diagonal elements of this matrix have the value 1. Breiman

(2001) has shown that the proximities are a kind of Euclidean distance between

observations and uses them as a basis for imputing values to observations were some

variables are not measured.

 In yaImpute, the distance between observations is defined to be the compliment of

the proximities. The diagonal elements are all zero meaning that every observation is zero

distance from itself. To find the k-NN for an observation, a column from this that

corresponds to a target observation is extracted that includes only reference observations.

The vectors sorted and the row identifiers corresponding to the k smallest distances.

 Note that the proximity matrix is often too large to store and furthermore, we don’t

need proximities between target observations, only between reference and targets and

among references to support some kinds of validation. Therefore, the yaImpute code

stores a much smaller matrix called the nodes matrix. This matrix is n x ntree where ntree

 9

is the number of trees. The elements of this matrix are terminal node identifications. The

node matrix is partitioned into two matrices, one each the reference and target

observations. When finding k-NNs, only the needed proximities are computed thereby

avoiding the allocation of a potentially huge matrix and with saving computer time by not

computing values that are not needed.

 The random forests algorithm implemented in R (package randomForest, Liaw and

Wiener 2002) can currently be used to solve unsupervised classification (no Y-variable),

regression on a single Y, and classification on a single Y so long the number of levels is

32 or less.

 In yaImpute we have extended the randomForest package to serve our needs, as

follows. First, in unsupervised classification the idea of making a “prediction” for a value

for Y is nonsense and therefore not allowed. In yaImpute, however, we forced the

randomForest to make a prediction only because we want to save the nodes matrix that

results from attempting a prediction. Second, the randomForest package implementation

does not save the nodes matrix when regression is being done unless the proximity matrix

is also allocated and saved. This is not the case when classification is done. To get around

this restriction, yaImpute converts regression problems into classification problems by

creating classes along the continuous scale of the Y variable. This approach seems to

work but it will be abandoned in future versions by rewriting parts randomForest

package as needed to properly use regression for continuously measured Y’s.

 Lastly, we devised an experimental way to handle multivariate Y’s. The method is to

build a separate forest for each Y and then join the nodes matrices for each. Each forest is

conditioned to reduce the classification error for a given Y and the proximities reflect

choosing X-variables and split points that best accomplish that goal. If two or more Y-

variables are used, the joint proximities reflect the joint set of X-variables and split points

found to achieve the multiple goals. Since some Y-variables may be more important than

others, users are allowed to specify a different number of trees in the forests

corresponding to each Y-variable.

Diagnostics

There is a large need to develop techniques useful for diagnosing whether or not a given

application of imputation is satisfactory for a specific purpose, or whether one method of

computing distance results in better results than another. We anticipate that this field will

progress quickly. yaImpute includes functions to plot results from a given run, compute

root mean square differences, compare these differences and plot them, and so on. It also

provides function errorStats to compute the statistics proposed by Stage and Crookston

(In press).

 The package includes a function to compute the correlations between observed and

imputed (function cor.yai) even though we do not believe correlation should be used,

preferring root mean square difference (function rmsd.yai). We recommend against

using correlation as a measure of the degree of association between observed and

imputed values because correlation can be manipulated by how the sample is distributed

along the scale of X-variables (Warren 1971) and root mean square difference (rmsd),

and standard error of imputation (SSI, see Stage and Crookston (In press) and function

errorStats) are not biased by distribution of the sample. Furthermore, correlation is

usually viewed as measuring the degree of association between two variables, say one X

 10

with one Y. When used to measure association in imputation, it is used to measure the

degree of association between paired observations of a single Y. While this may be an

interesting statistic, it is easy to forget that it does not have the same statistical properties

as those attributed to the relationship between the population attribute ρ and its sample

estimate r.

 In regression, R
2
 is used to measure the degree of association between a predicted

value of a given variable and an observed value. As the regression function gets closer to

the true relationship, the value of R
2
 approaches 1. Lets say that we have a perfectly true

regression, y = f(X). If we used this formula in a NN-style imputation, we would not be

imputing the predicted value of y (its perfect estimate), we would be imputing a value of

y measured on a second (nearby) sample from the population. If every member of the

population has a different value of y, the correlation between observed an imputed would

never be perfect, even if the regression used to order samples near each other were a

perfect predictor, and if the sample were actually a complete census!

 Stage and Crookston (In press) changed the word “error” to “difference” in defining

root mean square difference (rmsd) because the value as used in imputation includes

different components of error than the value (rmse) used in a regression context and

therefore it has different statistical properties. Reconsider the case described above—

rmse will approach zero as the regression approaches the true function, but rmsd can

never be zero.

 Another diagnostic is to find notably distant target observations (function

notablyDistant). These are observations that are farther from the closest reference

observation than is typical of distances between references. The cause may be that they

are outside the range of variation of the references or because they fall in large gaps

between references.

 Given a threshold distance, it is a simple job to identify the notably distant target

observations. The question then becomes, what is a reasonable threshold distance?

 For all the distance methods except randomForest, it appears that the distribution of

distances among references follows a lognormal distribution. Following that assumption,

a threshold is defined as the distance corresponding to the fraction of distances that

account for the p proportion of the properly parameterized lognormal probability density

function. When randomForest is used, the distribution of distances is assumed to follow

the Beta distribution. Alternatively, users may specify the threshold, perhaps by

inspecting the frequency distribution and choosing the threshold visually. We used Evans

et al. (2000) for formulas for computing the parameters of these distributions.

Real-world Example

To illustrate the tools in yaImpute we present a preliminary analysis of the Moscow

Mountain St. Joe Woodlands (Idaho, USA) data, originally published by Hudak et al.

(2006). The analysis is broken into two major steps. First, the reference observations are

analyzed using several different methods, the results compared, and a selection of the

best model is made. Second, imputations are made using ASCII grid map data as input

and the maps are displayed. Note that these data are actively being analyzed by the

research team that collected the data and this example is not intended to be a final result.

 We start by building x and y data frames and running four alternative methods.

> require (yaImpute)

 11

> data(MoscowMtStJoe)

> x=MoscowMtStJoe[,c("EASTING","NORTHING","ELEVMEAN","SLPMEAN",

+ "ASPMEAN","INTMEAN","HTMEAN","CCMEAN")]

> x[,5]=(1-cos((x[,5]-30)*pi/180))/2

> names(x)[5]="TrASP"

> y=MoscowMtStJoe[,c(1,9,12,14,18)]

> mal <- yai(x=x, y=y, method="mahalanobis", k=1)

> msn <- yai(x=x, y=y, method="msn", k=1)

> gnn <- yai(x=x, y=y, method="gnn", k=1)

> ica <- yai(x=x, y=y, method="ica", k=1)

Method randomForest works best when there are few variables and when factors are

used rather than continuous variables. The whatsMax function is used to create a data

frame of containing a list of the species of maximum basal area, and two other related

variables.

> y2=cbind(whatsMax(y[,1:4]),y[,5])

> names(y2)=c("MajorSpecies","BasalAreaMajorSp","TotalBA")

> rf <- yai(x=x, y=y2, method="randomForest", k=1)

> head(y2)

 MajorSpecies BasalAreaMajorSp TotalBA

1 PSME_BA 47.716568 47.941832

2 ABGR_BA 20.904731 59.307392

3 zero 0.000000 77.123193

4 ABGR_BA 2.079060 3.740631

5 ABGR_BA 22.814781 67.938562

6 THPL_BA 11.129221 32.982188

> levels(y2$MajorSpecies)

[1] "ABGR_BA" "PIPO_BA" "PSME_BA" "THPL_BA" "zero"

The plot command is used to plot the observed over imputed values for the variables

used in the randomForest result (Fig. 2).

> plot(rf)

 12

0 10 20 30 40 50 60

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Imputed

O
b
s
e
rv

e
d

BasalAreaMajorSp

0 20 40 60 80

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Imputed

O
b
s
e
rv

e
d

TotalBA

Imputed

O
b
s
e
rv

e
d

ABGR_BA PSME_BA zero

A
B

G
R

_
B

A
P

S
M

E
_
B

A
z
e
ro

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MajorSpecies

rf

Figure 2: Plot of the yai object generated with method=randomForest.

However, the variables used to build this result are not those that are of interest. To make

the ultimate comparison, the original Y-variables are imputed using the neighbor

relationships in object rf, and then a comparison is built and plotted (Fig. 3) for all the

methods:

> rfImp <-impute(rf,newdata=y)

> rmse=compare.yai(mal,msn,gnn,rfImp,ica)

> apply(rmse,2,mean)

 mal.rmsdS msn.rmsdS gnn.rmsdS rfImp.rmsdS ica.rmsdS

 1.2058184 1.0738770 1.1185645 0.9892645 1.1198709

> plot(rmse)

 13

mal.rmsdS

0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

0
.0

0
.4

0
.8

1
.2

0
.0

0
.4

0
.8

1
.2

msn.rmsdS

gnn.rmsdS

0
.0

0
.4

0
.8

1
.2

0
.0

0
.4

0
.8

1
.2

rfImp.rmsdS

0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

0
.0

0
.4

0
.8

1
.2

ica.rmsdS

Figure 3: Comparison of the scaled rmsd for each method. Most of the values for method rfImp (imputed

Y-variables build using method randomForest) are below the 1:1 line indicating that they are generally

lower than those for other methods.

 The steps presented so far can be repeated using the data available in the package

distribution. However, following steps require that ASCII grid maps of the X-variables be

available and they are not part of the distribution. The following commands are used to

create the input arguments for function AsciiGridImpute to build output maps of the

imputed values. Note that object rf was built using data transformed from that in the

original set of Y-variables. Therefore, the original Y data frame is passed to function

AsciiGridImpute as ancillary data.

 14

> xfiles=list(CCMEAN="canopy.asc",ELEVMEAN="dem.asc",

+ HTMEAN="heights.asc",INTMEAN="intense.asc",SLPMEAN="slope.asc",

+ TrASP="trasp.asc",EASTING="utme.asc",NORTHING="utmn.asc")

> outfiles=list(ABGR_BA="rf_abgr.asc",PIPO_BA="rf_pipo.asc",

+ PSME_BA="rf_psme.asc",THPL_BA="rf_thpl.asc",

+ Total_BA="rf_totBA.asc")

> AsciiGridImpute(rf,xfiles,outfiles,ancillaryData=y)

 Package sp (Pebesma and Bivand 2005) contains functions designed to read and

manipulate ASCII grid data and are used to plot part of the total image of both X- and Y-

variables (Figs. 4 and 5).

> require(sp)

> elev =read.asciigrid("dem.asc") [100:450,400:700]

> canopy =read.asciigrid("canopy.asc") [100:450,400:700]

> TrAsp =read.asciigrid("trasp.asc") [100:450,400:700]

> intensity=read.asciigrid("intense.asc")[100:450,400:700]

> par(mfcol=c(2,2),plt=c(.05,.95,.05,.85))

> image(elev,col=hcl(h=140,l=seq(100,0,-10)))

> title("Elevation (DEM)")

> image(canopy,col=hcl(h=140,l=seq(100,0,-10)))

> title("LiDAR mean canopy cover")

> image(TrAsp,col=hcl(h=140,l=seq(100,0,-10)))

> title("Transformed aspect")

> image(intensity,col=hcl(h=140,l=seq(100,0,-10)))

> title("LiDAR mean intensity")

> totBA=read.asciigrid("rf_totBA.asc")[100:450,400:700]

> abgr =read.asciigrid("rf_abgr.asc") [100:450,400:700]

> pipo =read.asciigrid("rf_pipo.asc") [100:450,400:700]

> psme =read.asciigrid("rf_psme.asc") [100:450,400:700]

> thpl =read.asciigrid("rf_thpl.asc") [100:450,400:700]

> par(mfcol=c(2,2),plt=c(.05,.95,.05,.85))

> image(totBA,col=hcl(h=140,l=seq(100,0,-10)))

> title("Total basal area")

> image(abgr,col=hcl(h=140,l=seq(100,0,-10)))

> title("Grand fir basal area")

> image(pipo,col=hcl(h=140,l=seq(100,0,-10)))

> title("Ponderosa pine basal area")

> image(psme,col=hcl(h=140,l=seq(100,0,-10)))

> title("Douglas fir basal area")

> image(thpl,col=hcl(h=140,l=seq(100,0,-10)))

> title("Western red cedar basal area")

 15

Elevation (DEM)

LiDAR mean canopy cover

Transformed aspect

LiDAR mean intensity

Figure 4: Grid maps of four of the predictor variables.

 16

Total basal area

Grand fir basal area

Ponderosa pine basal area

Douglas fir basal area

Figure 5: Maps of the basal area of four species. Note that any variable that is known for the reference

observations can be imputed.

Conclusions

Package yaImpute was built to provide an integrated set of tools designed to meet

specific challenges in forestry. It provides alternative methods for finding neighbors,

integrates a fast search method, and introduces a novel and experimental application of

randomForest. A function for computing the error statistics suggested by Stage and

Crookston (In press) is included. We anticipate that progress in this field will continue,

particularly in the area of discovering better X-variables and transformations improving

the essential requirements for applying these methods: that there be a relationship

between the X- and Y-variables.

 17

References

Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of the American Iris Society 59:2–5.

Breiman, L. (2001). Random forests. Machine Learning. 45:5–32.

Crookston, Nicholas L.; Moeur, Melinda; Renner, David. (2002). Users guide to the Most Similar Neighbor

Imputation Program Version 2. Gen. Tech. Rep. RMRS-GTR-96. Ogden, UT: U.S. Department of

Agriculture, Forest Service, Rocky Mountain Research Station. 35 p.

Evans, M.; Hastings, N.; Peacock, J.B. (2000). Statistical Distributions. New York: John Wiley & Sons,

Inc. 219 p.

Holmström, H., Kallur, H., Støahl, G., (2003). Cost-Plus-Loss analyses of Forest Inventory Strategies based

on kNN-Assigned Reference Sample Plot Data. Silva Fennica 37 (3), 381–398.

Korhonen, K.; Kangas; A. (1997). Application of nearest-neightbor regression for generating sample tree

information. Scandavian Journal of Forest Research 12, 97–101.

Gittins, Robert. (1985). Canonical Analysis A review with applications in ecology. Volume 12 in

Biomathematics. New York: Springer-Verlag. 351 p.

Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Morgan, P.

(2006). Regression modeling and mapping of coniferous forest basal area and tree density from

discrete-return lidar and multispectral satellite data. Can. J. Remote Sensing. 32(2):126-138.

Liaw, A.; Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3):18-22.

LeMay, V.; Temesgen, H. (2005). Comparison of Nearest Neighbor Methods for Estimating Basal Area

and Stems per Hectare Using Aerial Auxiliary Variables. For. Sci. 51(2):109 –119.

Marchini, J.L.; Heaton, C.; Ripley, B.D. (2006). fastICA: FastICA algorithms to perform ICA and

Projection Pursuit. R package version 1.1-8. http://www.stats.ox.ac.uk/~marchini/software.html

Moeur, Melinda; Stage, Albert R. (1995). Most similar neighbor: an improved sampling inference

procedure for natural resource planning. Forest Science. 41:337-359.

Ohmann, J.L.; Gregory, M.J. (2002). Predictive mapping of forest composition and structure with direct

gradient analysis and nearest neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 32:725–

741

Oksanen, J.; Kindt, R.; O'Hara, R.B. (2005). vegan: Community Ecology Package version 1.6-10.

http://cc.oulu.fi/~jarioksa/.

Pebesma, E.J.; Bivand, R.S. (2005). Classes and methods for spatial data in R. R News 5 (2), http://cran.r-

project.org/doc/Rnews/.

R Development Core Team (2006). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rao, C.R. (1973). Linear Statistical Inference. New York: John Wiley & sons, Inc.

SAS. (2000). SAS Version Eight. Cary, NC: SAS Institute Inc.

Stage, A.R. (1976). An Expression for the effect of aspect, slope, and habitat type on tree growth. For. Sci.

22(4):457-460.

Stage, A.R.; Crookston, N.L. (In press). Partitioning error components for accuracy-assessment of near

neighbor methods of imputation. For. Sci.

Warren, W.G. (1971). Correlation or Regression: Bias or Precision. Applied Statistics. 20(2):148-164.

