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Abstract:  Imputation is applied for two quite different purposes: to supply missing data to complete a 24 

data set for subsequent modeling analyses, or to estimate sub-population totals.  Error properties of the 25 

imputed values have different effects in these two contexts.  We partition errors of imputation derived from 26 

similar observation units as arising from three sources: observation error, the distribution of observation 27 

units with respect to their similarity and pure error given a particular choice of variables known for all 28 

observation units. Two new statistics based on this partitioning measure the accuracy of the imputations, 29 

facilitating comparison of imputation to alternative methods of estimation such as regression and 30 

comparison of alternative methods of imputation generally.  Knowing the relative magnitude of the errors 31 

arising from these partitions can also guide efficient investment in obtaining additional data.  We illustrate 32 

this partitioning using three extensive data sets from western North America. Application of this 33 

partitioning to compare near-neighbor imputation is illustrated for Mahalanobis- and two canonical 34 

correlation-based measures of similarity.       35 

Keywords: Most-similar-neighbor, k-nn inference, missing data, landscape modeling.  36 

 37 

Introduction 38 

 Imputation methods are important tools for completing data sets in which some observation units 39 

lack observed values for a portion of their attributes.  The objective is to impute a value as close to “truth” 40 

for each missing value in the observation unit as if it were examined in great detail for all attributes.  41 

Criteria for imputations to support this objective are essentially different from criteria for estimates of 42 

population totals.  The difference is that pure error, rather than being a nuisance, is of real value for  43 

subsequent resource analyses and displays. These analyses are often non-linear optimizations or 44 

simulations. For them to be realistic, the structure of the variances and covariances among attributes 45 

inherent in the population should be preserved in the data set.  Even for display purposes, omission of pure 46 

error will cause the range of the displayed values to be contracted.  Unfortunately, these inherently useful 47 

variances may be combined with variances attributable to the methodology used in the sampling and 48 

imputation processes.  This mixture complicates choice among analytical methods for imputation.  In this 49 

report we provide statistics based on a partitioning of the error components which facilitate finding a closer 50 
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approximation of “truth”.  We partition imputation errors independently for each variable in the data set 51 

although the joint distribution of their error components would be of interest for some applications.   52 

Imputation uses values of variables measured for all observation units (X’s) to guide the 53 

imputation of values of Y’s that are measured only for a sample subset of the observation units (the 54 

Reference set) to those units for which the Y’s are missing (the Target set).  Both Xi and Yi may be vectors 55 

of attributes for the i
th

  observation unit. Near-neighbor imputation selects units from the reference set to 56 

serve as surrogates for members of the target set using a measure of similarity based on the X’s.  Choice of 57 

a particular measure of similarity, in turn, may depend on the relation of the Y’s to the X’s.  Elements of Yi 58 

and Xi, yi and xi, will be subscripted only to identify the i
th 

observation unit.  T and R will be used as 59 

additional subscripts when it is relevant to indicate that a Reference observation unit is being used as if it 60 

were a Target unit (hence a “pseudo-target”).  Unit identifying subscripts (i or j) will be omitted when the 61 

variables are referred to collectively.  Var(·) capitalized will be used for expected values, lower case var(·) 62 

for statistics calculated from the data.   63 

Imputation from near-neighbor observations is often used for classification.  However, when the 64 

“classes” are arbitrary intervals on scales of essentially continuous variables, we argue that the imputation 65 

should be based directly on the scales of the underlying continuous variables.  If classes are needed for 66 

display purposes, the classification algorithm should use the imputed data.  We will not consider in this 67 

paper errors in classification in which the classes are inherently discrete, requiring the concept of 68 

“membership”.  For discrete classes, other methods for classification such as using a discriminant function 69 

may be more appropriate than near-neighbor.  For example, classification by a discriminant function may 70 

assign different classes to members of a target/reference pair of near neighbors because the discriminating 71 

boundary passes between them whereas near-neighbor imputation would assign the target to the same class 72 

as the reference member of the pair.  However, there is a parallel process of partitioning the error sources in 73 

imputation of discrete variables that is beyond the scope of this paper. .  74 

Error properties of estimates derived from imputation differ from those of regression-based 75 

estimates because the two methods include a different mix of error components.  For example, the 76 

reference-set data may not be beyond reproach because of measurement error. These error properties 77 

influence how we evaluate quality of the imputations, compare alternative methods for imputation and 78 
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invest in data collection.  Commonly computed statistics that compare imputed values to those of a 79 

presumably similar observation unit mask methodological differences in this cloud of variation.  We 80 

address this problem by partitioning the variation into components that can be estimated from the reference 81 

set.  Then, new statistics based on this partitioning are presented for assessing the accuracy of imputation 82 

methods.    83 

 Several questions may be answered using these error components: 84 

1)  How does the accuracy of imputed Y’s compare to accuracy of estimates from regression, stratum 85 

means or other model-based estimates?    86 

2)  How large is the error caused by imputing values to a target unit from reference units where there is 87 

substantial difference in their X’s?  Is there room for improvement by obtaining additional   88 

reference observations to fill gaps in their distribution?  How is this error component affected by 89 

the choice of a particular measure of similarity? 90 

3)  How is the accuracy of imputation affected by the choice of variables and their transformations?   91 

4)  What is the effect on imputed values of pooling k reference observations? 92 

5)  How do the measurement accuracies compare to components of variation from other sources? 93 

6)  Would investments in additional data be more efficient if used to obtain information on variables to be 94 

added to the target set (new X’s), to refine the estimates of the X’s already included, or to obtain 95 

data on additional units for the reference set? 96 

Resolution of these questions requires quantitative estimates of the sources of imputation error.  97 

These estimates can be obtained from the information in the n observation units in the reference data.  In 98 

analysis of data in the reference-set data, although we will use some of the data as if they were targets, 99 

there is no difference in their approximation of “truth”, no intrinsic differences between “observed” and 100 

“predicted”.  We are simply describing the properties of differences between members of pairs of 101 

observations.  When the value to be imputed is a weighted average of k near neighbors, then its error 102 

properties are derived from the error properties of the k separate pairs and the weights defined by the 103 

particular k-nn procedure. 104 

Bootstrap and cross-validation methods for answering some of these questions have been 105 

developed for imputation methods other than near-neighbor (Shao and Sitter 1996) or for classification 106 
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with k-nn (Mullin and Sukthankar 2000). Neither of these papers has addressed the problem of partitioning 107 

the errors as to sources.  Moeur and Stage (1995) used data-splitting and jackknife methods to evaluate 108 

capability of Most Similar Neighbor (MSN) to reproduce the variance and covariance structure of the 109 

reference data and to compare error rates to those obtained by stratified sampling and regression.  Their 110 

analyses of errors also included variation in the coefficients in the measure of similarity caused by 111 

sequentially omitting 1.7% of their data as well as the difference between the observed and imputed Y 112 

values for the pair selected by the calculated similarity measure.  113 

Splitting data into “calibration” and “validation” subsets, which was intended to reduce bias in 114 

error estimates, introduces a different bias into estimates of imputation errors.  The withheld reference 115 

observations in sparsely-represented parts of X-space could have supplied imputations for nearby target 116 

observations. In the analysis of imputation error, however, those targets will be paired with a more remote 117 

reference observation, thereby increasing the estimated error.  A further disadvantage of the jackknife 118 

procedure is that it may increase the estimate of error by increasing the mean-square bias.  Targets in the 119 

midst of a cloud of reference observations may be paired with an observation from any direction.  Targets 120 

at the edge of a cloud, however, will likely be paired with a more central point.  If there is a trend in the Y’s 121 

with distance from the center of the cloud, then the asymmetry of direction to the reference introduces bias 122 

in the imputed value.   Withholding data increases this bias unnecessarily.   The jackknife procedure using 123 

a single reference observation as if a target minimizes this bias by using the full range of data (except for 124 

the single reference unit).  Other methods to reduce this bias in k-nn imputation have been evaluated by 125 

Malinen (2003).  126 

A statistic commonly used to evaluate imputation error estimates the root-mean-square differences 127 

between reference and target observations by withholding each observation unit in the reference set while 128 

searching for its similar neighbor in the remainder of the reference set.  The term RMSE (root-mean-square 129 

error) used for this statistic is unfortunate (e.g. Moeur and Stage 1995, Crookston et al. 2002).  The term as 130 

used in imputation includes different components of error than the same term used in a regression or 131 

sampling context. Therefore, we use the term Mean Squared Difference (MSD) for the statistic describing 132 

squared differences in a pair of similar observations. Thus, our partitioning is applicable for evaluating any 133 

of the near-neighbor methods of imputation that are judged on the basis of sums of squared errors.   134 
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 We use the term “distance” for the value produced by the function measuring dissimilarity 135 

between the i
th

 and j
th

 pair of observation units.  Although Podani (2000) cites more than 60 distance 136 

functions, those most widely used for imputation are of the quadratic form: 137 

 dij
 2
 =  (Xi  - Xj) W (Xi - Xj )′       (1)  138 

where: 139 

 Xi is the (1 x p) vector of X-variables for the i
th

 target observation unit, 140 

 Xj is the (1 x p) vector of X-variables for the j
th

 reference observation unit, and 141 

 W is a ( p x p) symmetric matrix of weights. 142 

 If the weight matrix, W, is the diagonal identity matrix, then we have a simple Euclidean distance 143 

(squared). As a variation of Euclidean distance, some analysts empirically vary the diagonal elements to 144 

improve the imputation.  If correlations among the variates are to be considered, then the inverse of their 145 

correlation matrix is used for W to produce a Mahalanobis distance—a distance function that plays a key 146 

role in estimating the error components.  MSN distances are of the same form with W derived from 147 

analyses of canonical correlation (Moeur and Stage 1995), canonical regression (Stage and Crookston 148 

2002) or of canonical correspondence (Ohmann and Gregory 2002).  With a simple transformation of the 149 

X’s to ∑
=

p

l ili xx
1

2   
the quadratic form with identity matrix for W also includes spectral analysis 150 

imputation as used by Sohn et al. (1999). 151 

 Our following presentation is in four sections: 1) defining error sources in the process of imputation, 2) 152 

partitioning MSD into components arising from these sources, 3) presenting some new statistics based on 153 

the partitioning relevant to the key questions stated above, and 4) applying these statistics to three extensive 154 

data sets.     155 

Components of Error 156 

Variation in imputed values arises from both natural variability of attributes of the ecosystem, and 157 

from the measurement and analytical procedures used to describe the ecosystem.  While natural variability 158 

is useful in analyses requiring the completed data set, variation introduced by measurement and analytical 159 

procedures is a nuisance to be reduced. 160 

Imputation error arises from four sources for a given set of X and Y variables: 161 
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1)  Measurement errors of the Y’s in the reference set. These errors are defined as: 162 

     εYj = yj − yj*        (2) 163 

 in which the starred variables represent the true, but unknown, values.  The εYj are not properties 164 

of the ecosystem being described, but rather, properties of the accidents of how we observed it. 165 

The measurement errors may arise from using a sample-based estimate as if it were a complete 166 

census within the j
th

 unit, from changes during elapsed time since observation, from lack of 167 

standardization among different observers or their instruments, or any combination of such causes.  168 

These errors often are assumed to be zero (e.g. Moeur and Stage 1995).  We now relax that 169 

assumption because in some applications, errors from this source have been quite large relative to 170 

total error.  We assume that the measurement errors can be rendered unbiased and are independent 171 

of the true yj* and of the observed X’s. 172 

2)  Pure error. That there exists a relation between the Y’s and the X’s is a key premise of near-neighbor 173 

inference. For a given set of X’s the departure of an element of Yj
* 

 from the underlying true, but 174 

unknown, model is termed pure error.   175 

  εPj = yj
* 
− g(Xj)          (3) 176 

 Magnitude of the pure error (εPj) depends on the particular choice of Y- and X-variables. By 177 

definition, pure error, which arises from effects not associated with the X’s is independent of the 178 

X’s and has zero expectation. Examples of omitted factors are myriad, but would include 179 

predicting species composition (the Y’s) from Landsat spectra (the X’s), but omitting elevation as 180 

an additional X-variable that might improve the imputation. 181 

  Not so obvious as a source of pure error would be the effect of lack of accurate 182 

registration between the Y-variable observation units located on the ground and the paired X-183 

variable observation units from a remote sensing platform.  In effect, the observed values of Xj 184 

from a complete census from the erroneous position are just a differently defined variable for 185 

imputation than the Xj’s from a properly registered observation unit.  Therefore, variation from 186 

lack of registration would contribute to pure error that might be reduced by improving registration. 187 

  From [2] and [3]   188 

   yj 
 
=

  
g(Xj)  +  εPj + εYj       (4) 189 
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 in which the error components include measurement error (εYj), and pure error ( εPj). Pure error 190 

and measurement error are inseparable in many data sets.  To estimate pure error alone requires an 191 

external estimate of the measurement error.  For example, if the observation unit is a spatial 192 

polygon represented by the mean of each of the attributes over a number of plots within the 193 

polygon, then the estimated variance-of-the-mean would provide the sampling portion of 194 

measurement variance to be subtracted to leave pure error.   195 

3)  Factors affecting the availability and similarity of reference observation units to serve as surrogates for 196 

the target units.  This component depends on both the choice of a distance function and on the 197 

distribution of observation units in the space spanned by the X-variables. Ideally, all the target data 198 

should be within the span of the reference data. The denser the data, the shorter will be the average 199 

distance between a target unit and its nearest surrogate in the reference set.  And shorter distances 200 

usually imply greater similarity.  The magnitude of this effect can be appreciated by comparing the 201 

distribution of distances to nearest neighbors among the reference data to the distribution of 202 

distances from each target observation to its nearest neighbor in the reference set. The distances 203 

between the real targets and their near neighbors in the reference set usually would be, on average, 204 

shorter than the distances among members of the reference set.  Thus, estimated errors based only 205 

on the reference set will be biased upward.  Effects of the density and range of the data apply to all 206 

methods of imputation and are determined by the inventory design.   207 

4)  And, finally, the choice of k, the number of reference observations and their relative weights in k-nn 208 

methods of estimating Y’s as a weighted average of k near neighbors.   209 

 Error analyses we propose are based upon the data in the reference set.  Inferences about the error 210 

properties of the estimates for the entire population based on these analyses depend on the extent to which 211 

the reference set represents the target set.  As with inferences about any population parameter, appropriate 212 

randomization is a prerequisite to the assumption that the partitioning of error based on the reference set 213 

will apply to imputations for the real target set.   214 

Imputation Error Statistics Based on the Reference Set 215 

In the imputation context Σi(yTi-yRj)
2
/n 

 
is the statistic commonly reported as “squared error” based 216 

on the n observation units in the reference set. We use the term Mean Square Difference (MSD) for it to 217 
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emphasize that it is not an “error”—rather it is simply a function of the difference between two co-equal 218 

observations, neither of which is any more “true” than the other. In this and the expressions to follow, the 219 

subscript j identifies the reference observation to be imputed to the i
th

 pseudo-target observation unit. For 220 

each observation unit i, the value of j is determined by the minimum of  dij
2
  in (1).  In k-nn imputation yRj is 221 

replaced by an average of k values of ym  using a weighting rule for the particular flavor of k-nn inference, 222 

where m is from the set of indices of the k observations selected as near-neighbors.  We will develop the 223 

partitioning of error components for k = 1 because the notation is much more compact.  However, the 224 

extension to k > 1 introduces no new concepts and will be treated when we discuss the choice of k as an 225 

error source.   226 

Each member of the pairs being averaged in MSD includes stochastic components which do not 227 

change whether the observation unit is playing the role of target or reference.  Each pair also includes a 228 

component determined by the distribution of the X’s within the reference set.  Thus, the statistics we 229 

compute are conditional on distribution of X‘s in the reference set—and may be used to guide decisions on 230 

how or whether to augment that reference set. The stochastic components, pure error and measurement 231 

error, are assumed to be drawn from distributions having zero mean and zero covariance. Therefore, for 232 

both stochastic error sources:  233 

E[εPj] = E[εYj] = 0; Var(εP) = E[ΣjεPj
2
/n]; Var(εY) = E[ΣjεYj

2
/n]; E[εYiεPj] = 0.  (5) 234 

We will define the estimated variances of the stochastic error terms var(εP) and var(εYj) as the 235 

average over the reference set, dividing by n rather than (n-p) because the error terms are defined relative to 236 

true values rather than from a computed mean.    237 

We first introduce the measurement error from (2) into an addend of MSD: 238 

   
(yTi-yRj)

2
 = (yTi*+ εYi – yRj*– εYj)

2
        (6) 239 

Expanding (6) on the starred terms from (3) we have:  240 

   
(yTi-yRj)

2
 = [g(XTi) + εPi + εYi  – g(XRj)  – εPj – εYj ]

2 
     (7) 241 

Averaging over the n pseudo target units (yTi) in (7) assuming εPj and εYj are independent of each other and 242 

using (6), the expectation of MSD becomes:  243 

E[MSD] = E[Σi(yTi - yRj)
2
/n] = Σi [g(XTi) – g(XRj)]

2
/n  + 2 Var(εY) + 2 Var(εP)  (8) 244 
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The term: Σi [g(XTi) – g(XRj)]
2
/n in (8) is, therefore, the error component arising from the distance between 245 

a pseudo-target point and its selected surrogate reference point.  Note that in addition to the distance error 246 

component, the other error variances are included twice in MSD. 247 

Estimating pure error and measurement error  248 

 In a regression context, sums of squares for pure error plus measurement error can be estimated 249 

from differences between the y’s for observations having the same X’s.  The corresponding concept in 250 

imputation is for observations separated by zero Mahalanobis distance.  Mahalanobis distances are 251 

calculated in the space spanned by the normalized, but uncorrelated X-variables.  The Mahalanobis distance 252 

was selected because other distance functions may transform the X’s such that the dimension of the space 253 

spanned by the transformed X’s is of lower dimension than the original X-space. Zero distances in the 254 

space of reduced dimension would not necessarily indicate that XTi for a target unit is identical to the XRj 255 

for the selected reference unit.  We argue that an estimate of the twice the sum of variances of pure error 256 

and measurement error can be obtained by averaging the squared differences for some fraction of the units 257 

with short Mahalanobis distances.  We call this estimate MMSD(0), adding an initial M and the (0) to 258 

suggest it is derived from pairs of units with Mahalanobis distances of close to zero.  Using (8), 259 

  E[MMSD(0)] = 2 Var(εP) + 2 Var(εY) + bias     (9) 260 

where the bias equals the amount by which the mean of the squared distance component (as in (8) but 261 

averaged over only the observation units with close-to-zero distances) differs from zero.  Note that whereas 262 

MSD may be derived from any of the many distance functions, MMSD(0) always uses Mahalanobis 263 

distance.  264 

 The estimate is biased by the average of [g(XTi) – g(XRj)]
2  

in MMSD(0). The bias might be 265 

reduced by regressing the values of (yTi – yRj)
2
 on their distances where the near-neighbor pairings are 266 

determined using a Mahalanobis distance function.  The intercept of this regression may provide an 267 

improved estimate of  MMSD(0) by extrapolation to zero distance. However, for some obstreperous Y-268 

variables, the squared deviations decline with increasing distance so that the intercept is above the mean.  269 

This circumstance indicates that the X’s do not measure similarity for those elements of Y or that their  270 

stochastic components are heteroskedastic.  271 

Estimating distance component 272 
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 The distance component depends only on the range and density of the X’s and on the measure of 273 

similarity used to select the near neighbor(s). Equation (8) showed that E[MSD] is comprised of the 274 

distance component, Σi [g(XTi) – g(XRj)]
2
/n plus two times the sum of variances of pure error and 275 

measurement error.  Therefore, the distance component of MSD can be estimated by subtracting twice the 276 

components of pure error and measurement error estimated by (9) in the previous section: 277 

 Σi[g(XTi) – g(XRj)]
2
/n ≈ MSD– MMSD(0).      (10)  278 

This error component does not depend on the specific functional form of the relations of the Y’s to the X’s 279 

so any model lack-of-fit is not involved.  Therefore, it applies equally to near-neighbor pairing of units 280 

without regard for the distance function. Unfortunately, MSD– MMSD(0) is not constrained to be positive 281 

if [g(XTi) – g(XRj)]
2
 decreases with increasing distance. 282 

Using the partitioning to illuminate key questions 283 

 We now revisit key questions posed in the introduction, developing some new statistics based on 284 

the partitioning to provide answers.     285 

Accuracy of imputed values 286 

 The fundamental variance statistic in sampling inference compares an estimate with its true value. 287 

In our notation that comparison is yRj – g(Xi) for k equal to one. Therefore, we propose that the efficacy of 288 

the imputation process should be based on a statistic we term the Standard Error of Imputation (SEI).   289 

   SEI
2
 = Σi[yRj – g(XTi)]

2
 /n  i = 1,···,n and j minimizes dij

2
   (11) 290 

Unfortunately, the addends in the bracket of SEI cannot be computed directly from the data in the reference 291 

set because the true value, g(XTi),  is not directly observable.  The proposed aggregate statistic (11), 292 

however, can be obtained by replacing the “estimate” yRj in (11) with (4) evaluated for the j
th

 reference unit. 293 

 SEI
2
 = Σi[g(XRj)  +  εPj + εYj – g(XTi)]

2
 /n      (12)  294 

Then averaging with the same assumptions of error independence used in deriving (8).   295 

  E[SEI
2
] = E[Σi[yRj – g(XTi)]

2
 /n]  =  Σi[g(XRj) – g(XTi)]

2
/n + Var(εP) + Var(εY)   (13) 296 

which differs from MSD (8) by omitting the terms for the variances of pure error and sampling error arising 297 

from the target members of (11).  If the distance component of MMSD(0) can be assumed to be trivially 298 

small when (8) is averaged over only the shorter distances, then:  299 

 E[SEI
2
] = E[yRj – g(XTi)]

2
 ≈ MSD – MMSD(0)/2.     (14) 300 
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Imputation compared to estimates using f(X)  301 

 The regression model is: yj
* 
=  f(Xj)  +  εj  where the εj includes pure error, and the lack of fit of the 302 

assumed model. The regression model could be, but is not limited to the familiar linear parameterization  303 

f(Xj) =  BX′.  Alternatively it could be a nonlinear or nonparametric regression model or a collection of 304 

means for strata defined by the X’s. The true model  yj
*
=

 
g(Xj) + εPj  differs from the regression model by 305 

the lack-of-fit of the regression model: 306 

  εL(Xj)  = g(Xj)  −  f(Xj).        (15)  307 

The error statistic commonly calculated for a regression is the Standard Error of Estimate (SEE) (ignoring 308 

the reduction of the divisor by the number of estimated parameters):  309 

 SEE
2
 = Σj(yj− f(Xj))

2
/n

 
.        (16) 310 

 We assume that the lack-of-fit will sum to zero for the particular X’s (certain if f(X) is fit by least-squares 311 

and includes an intercept) in the Reference set.  312 

 Then, from (2), (3) and (15):
 313 

 (yj− f(Xj))
 2
 = ( εPj + εYj + εL(Xj) )

2
       (17) 314 

The terms for the model lack-of-fit were assumed to be independent of the X’s and of εPj and εYj so E(SEE
2
) 315 

is the sum of these three sources:  316 

 E[SEE
2
] = E[Σj(yj− f(Xj))

 2
/n]  = Var(εP) + Var(εY) + Σj[ε

2
L(Xj)]/n    (18) 317 

Comparison of E[SEI
2
] in (13) with E[SEE

2
] in (18) shows that they differ only by the substitution of the 318 

distance component, Σi[g(XRj) – g(XTi)]
2
/n, in imputation error variance for lack of fit, Σj(εL(Xj))

2
/n, in 319 

regression estimation error variance.   320 

 Rearranging (18) and substituting (9): 321 

  Σj[ε
2

L(Xj)]/n = E[SEE
2
] − E[MMSD(0)/2]      (19) 322 

 The ideal contents for a data set for subsequent analysis would be Yj* which would have variance 323 

about g(Xj) of Var(εP).  Unfortunately, the best imputation can do for a given data set is YTj which differs 324 

from the ideal by inclusion of measurement error variance plus the distance component.  Alternatively, 325 

regression estimation could supply as estimates f(Xj) plus a random element drawn from a distribution with 326 
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variance Var(εP). Using (4) and (15) and the independence of pure error relative to the model lack-of-fit, 327 

these estimates would have variance about g(Xj) given by: 328 

   E[Σj[f(Xj) + εPi – g(Xj)]
2
/n] = Σj(εL(Xj))

2
/n + Var(εP) = E[SEE

2
] − Var(εY)   (20) 329 

which can be estimated by: 330 

 Σj[f(Xj) + εPj – g(Xj)]
2
/n = SEE

2
 − MMSD(0)/2 + var(εP) = SEE

2
 − var(εY)  (21) 331 

Subtracting (21) from (14) the comparison of SEI
2
 to (21) becomes: 332 

 E[yRj – g(XTi)]
2
 −E[Σj[f(Xj) + εPi – g(Xj)]

2
/n] ≈ SEI

2
 − [SEE

2
 − var(εY)]   (22) 333 

which is the same as (13)−(18) plus pure error variance: 334 

  Σi[g(XRj) – g(XTi)]
2
/n − [Σj(εL(Xj))

2
/n + var(εP)]     (23) 335 

Thus, the variance of the imputed values would be greater than regression estimated values for each y if 336 

(22) or equivalently if (23) is greater than zero.  However, the regression alternative would not guarantee 337 

that the true correlation among the estimated y’s within each observation unit would be retained.  338 

Effects of distribution of X’s  339 

 The second key question concerning distributions of the X’s and alternative measures of similarity 340 

is addressed by considering the distance component of MSD: Σi[g(XTi) – g(XRj)]
2
/n.  This error component 341 

should be made as small as possible either by adding new members to the reference set to reduce average 342 

distance between target units and their similar reference unit(s) or by adopting a better measure of 343 

similarity or both. 344 

 An important consideration in accuracy assessment based only on the reference observation units 345 

is the relation between the distribution of the X’s in the target set in relation to that distribution in the 346 

reference set. Ideally, the reference set would completely cover the ranges of X-variables of the target set 347 

and have an approximately uniform distribution over the range of the combined sets.  The distance function 348 

being invoked may weight variation of some of the X’s heavier than others, thereby stretching and rotating 349 

the space spanned by the X’s,  Therefore, the overall effect the distributions should be compared in terms 350 

of the distances between reference unit and the pseudo-target unit of the reference pairs of near neighbors 351 

and the distances between the paired reference unit and the real target for which imputations are required.     352 
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 A statistic sensitive to the merits of alternative distance functions would reduce the influence of 353 

pure error and sampling error to focus on Σi[g(XTi) – g(XRj)]
2
.  At short distances, the values of (yTi–yRj)

2
 354 

are dominated by the pure error plus sampling error.  Therefore, a better alternative to MSD calculated as 355 

the average over all references is to average only using pairs separated by the longer distances.   356 

Choice of X’s and their transformations 357 

 How these decisions affect MSD for a particular variable y depends on the choice of the weight 358 

matrix W in (1). If W gives little or no weight to a particular x, then that x is effectively omitted.  359 

Conversely an x may be heavily weighted because of its contribution to g(X) for other y’s. Then, even 360 

though a subset of the x’s may effectively predict the y under consideration, their contribution will be 361 

diluted by differences in the extraneous x’s and MSD  for that element, y of Y will be dominated by pure 362 

error and measurement error to such an extent that [g(XTi) – g(XRj)]
2
 may decrease with distance.  If it does 363 

decrease, then the distance component and model lack-of-fit will be under-estimated.  364 

 Transformations in variables are typically invoked to simplify a model such as y=f(X) and to 365 

render errors more homogeneous.  Consideration of  (8) and (10) and (17) as estimates of sources of 366 

imputation errors from the three sources shows that transformations of the X-variables, while modifying the 367 

fit of the regression model y=f(X), affect MSD only through the distance component, Σi[g(XTi) – g(XRj)]
2
/n, 368 

and homogeneity of the pure error component.  Transformations affect the distance component through the 369 

selection of surrogates, which in turn depend on the choice of the weight matrix W.  In dense regions of the 370 

space spanned by the Xj’s of the reference set, the distance component in MSD is small relative to pure 371 

error plus measurement error for any choice of near neighbor.  On the other hand, where the XTi are not 372 

closely spaced (sparse), their imputations to the XTj will be few in number, so their effect on MSD will be 373 

small.  This ambiguity explains a puzzling property of near-neighbor imputation: that it has not appeared to 374 

be very sensitive to monotonic transformations of the variables. However, for imputation methods that base 375 

W on the relations of the Y’s to the Xj’s in distance calculations (e.g. MSN), the non-linear components 376 

represented by lack-of-fit would change the selection of “near neighbors”.  The extent of the change would 377 

be greatest in pairs of observation units in which model lack-of-fits were of opposite sign.  378 

Choice of k 379 
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 The partitioning of error provides useful insight concerning the choice of k for imputation using a 380 

weighted average of k near neighbors.  The obvious effect is that larger k, by averaging over the errors of 381 

more reference observations, would seem to reduce the error of the imputed value. However, it is not that 382 

simple.  Following the same assumptions used in deriving (8) MSD becomes: 383 

      E[Σi[yTi –ΣmwimyRm)]
2
/n]

  
= Σi [g(XTi) – Σmwimg(XRm)]

2
/n + (1+ ΣiΣmwim

2
/n)[Var(εY)  +  Var(εP)] (24) 384 

In k-nn imputation yRj of (8) is replaced by an average of k values of ym  using a weighting rule for the 385 

particular flavor of k-nn inference, where m is from the set of indices of the k observations selected as near-386 

neighbors to the i
th

 target and Σmwim = 1.  When wim = 1/k,  the multiplier of the variances in (24) becomes 387 

(1 + 1/k).  To the extent that it is pure error being reduced, increasing k is counter-productive for the 388 

subsequent analysis.  Offsetting this effect, measurement error will also be reduced in the same proportion.  389 

Hence there is a tradeoff, either lose valuable pure error or reduce undesirable measurement error.  The net 390 

effect of changing k also depends on the change in Σi[g(XTi)−Σmwimg(XRm)]
2
/n. Whether this component 391 

increases or decreases the total error depends on the change of  [g(XTi)−Σmwimg(XRm)]
2
 for the reference 392 

observation being added or omitted by changing k.  393 

Application to Example Data Sets 394 

Three data sets will be used to illustrate the estimation of error components and application of 395 

these estimates in evaluating alternative weight matrices.  All three use suites of remotely sensed data and 396 

data from digital terrain models to impute data from ground-based observations.  As examples of real 397 

imputation analyses, they illustrate the behavior of the statistics we propose.  We do not purport to second-398 

guess the analysis of these data sets, so the definitions of the 69 specific variables in these three data sets 399 

are mostly irrelevant to our purposes.  Where we do discuss behavior of the partitioning as a consequence 400 

of the biological situation, we will define those variables explicitly in the text.  Otherwise, readers desiring 401 

more detail are directed to the original sources.    402 

The first example uses data used by Moisen and Frescino (2002) obtained by the  USDA Forest 403 

Service, Rocky Mountain Experiment Station Forest Inventory and Analysis Unit (FIA).  The ground-based 404 

data (Y-variables) are from routine FIA observations for Utah, USA. The X-variables were obtained from 405 

LANDSAT and digital terrain data.  406 
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The other two data-sets use ground data from inventories of stands defined as polygons.  One, 407 

from the Deschutes National Forest in Oregon, USA has been used in previously reported analyses by 408 

Moeur (2000) and is the example in the MSN User’s Guide (Crookston et al. 2002).  The third data set is 409 

from Tally Lake area in the Helena National Forest in Montana, USA. For these comparisons, the Y-410 

variables will be limited to those measured on continuous scales.  These analyses differ from those reported 411 

by Stage and Crookston (2002) in that all discrete and a few redundant y’s have been omitted to achieve 412 

approximately equal numbers of y’s in the three examples, and additional x’s (transformations of the 413 

original variables) have been added.   Table 1 summarizes numbers of variables and sample sizes for the 414 

three data-sets. Of the three data sets, Users Guide has remarkably fewer observations in relation to the 415 

number of unique coefficients in the weight matrix being estimated (last line, Table 1).   416 

 The Utah data set differs from the other two in that it contains a notable portion of locations in 417 

non-forest although the continuous Y-variables describe forest stand parameters.  By contrast, y-values of 418 

zero in the other two data sets indicate lack of stocking in otherwise forested polygons. Proportion of 419 

zeroes in the three data sets are indicated in figure 2.   420 

 Table 2 summarizes the structure of the correlations between the canonical vectors for the three 421 

data sets.  Multivariate regression R
2
 of y on X are listed in col. B of table 2. Correlations between the Y’s 422 

and the X’s were lowest in the Utah data because the measurement errors of the Y’s from the FIA plot 423 

clusters were larger than in the two data sets based on inventories of stand polygons.  424 

Components of Variance 425 

 Data for partitioning variance for the three example data sets are displayed in table 3.  Columns A-426 

C contain statistics for each y-variable considered independently of the remaining elements of Y.  Columns 427 

D-F contains statistics for each y-variable, but for pairs of near neighbors selected using a multivariate 428 

Mahalanobis distance measure. 429 

Accuracy of imputed values 430 

Standard error of imputation squared (SEI
2
) (as a fraction of variance of each variable) of values 431 

imputed using a Mahalanobis distance function are shown in figure 3. The error component arising from 432 

distance between target and reference: Σi[(g(XTi) – g(XRj))
2
]/n as estimated by (10) is shown in figure 3 by 433 
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the shaded portions of the bars for each y-variable.  This figure also shows the combined components of 434 

pure error and measurement error as estimated by (9). 435 

Imputation compared to linear regression 436 

 Figure 4 compares the distance component of imputations (plotted as its negative) with the model-437 

lack-of-fit computed as SEE
2
-Min(MMSD(0)/2, SEE

2
) for f(X) = βX′.  As a corollary of the differences 438 

between imputation distance component and regression lack of fit, SEE
2
 is almost alsways less than SEI

2
.   439 

The exceptions to the inequality are Crown Cover (CCover) and logarithm of Pinus ponderosa volume 440 

(Vlg’PP) in the Tally Lake data set.  We conjecture that the linear regression is just not a very effective 441 

model for crown cover, and that the large proportion of zero data for Pinus ponderosa preclude effective 442 

prediction of volume.  Also, there would be two anomalies leading to negative estimates of lack-of-fit if the 443 

minimum of MMSD(0) and SEE
2
 were not used: logarithm of Engelmann spruce volume (Vlg’ES) in the 444 

Tally Lake data and net growth in cubic feet (NGRWCF) in the Utah data.  The larger values of MMSD(0) 445 

for these variables are the consequence of squared differences between yTi and yRj that decrease with 446 

increasing differences in the X-variables.  As a result, MMSD(0) is larger than SEE
2
.  We attribute this 447 

anomaly to unequal pure error in different regions of the X-space.  Engelmann spruce in the Tally Lake 448 

area occurs bi-modally with elevation—either very common at high elevations, or as sparse stringers in 449 

valley bottoms.  However, the density in the X-space of the observations representing valley bottoms and 450 

stands at similar elevations is higher than the density of data representing high elevations.  Thus 451 

observation pairs with near-zero distances tend to come from low elevations where the sporadic presence of 452 

spruce gives large squared differences whereas at high elevations, spruce is more ubiquitous giving smaller 453 

differences in volume even at larger separations in X-space.   454 

 That SEE is almost always less the SEI is not surprising because whereas SEE is a least squares 455 

minimization of the model prediction, SEI is not the result of an explicit minimization and includes the 456 

pure error and measurement error components.  When pure error should be included in estimates for 457 

subsequent analyses, the proportion of pure error that might be added to regression lack of fit that would 458 

just make (23) equal zero is indicated by the white bars in figure 4.  Unfortunately, we lack a direct 459 

estimate of measurement error that should be subtracted from SEI, so we can only show the margin from 460 

which it would be subtracted.   461 
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Effect of distances between X’s  462 

 The three data sets show differences in the proportions of variance attributable to the Mahalanobis 463 

distances between target and reference (figure 3, shaded bar). The low ratio of number of observations 464 

compared to number of coefficients to be estimated and large linear model lack-of-fit of the User’s Guide 465 

data produces a relatively large distance component compared to the Tally Lake data.  Utah data show an 466 

intermediate level because the effect of the larger number of data relative to the number of coefficients to 467 

be estimated is offset by the low correlations between the Y’s and the X’s (table 3) caused by the inclusion 468 

of non-forest observations (figure 2).  469 

 In the Tally Lake application, average distances from reference observation units to actual target 470 

observation units is 2.04 times the average distance from each reference observation unit to its nearest 471 

neighbor also in the reference set. Nearly one-third of the targets are farther from their nearest reference 472 

than the ninth percentile of the distribution of distances among the references.  The significance of this 473 

extrapolation might be determined by modeling squared differences for each element of Y as a function of 474 

distance.  Such analysis is beyond the scope of this report.  475 

Comparison of alternative distance functions 476 

 The difficulty of using MSD to compare alternative distance functions can be appreciated by 477 

considering that the influence of pure error plus sampling error would be double that shown in figure 3.  478 

Although the absolute value of differences in MSD arising from different distance functions would not 479 

change, the relative importance of the differences among the alternative distance functions would be under-480 

estimated.   481 

 Figure 5 a,b,c compares three alternative distance functions, the Mahalanobis distance used 482 

heretofore in this report, the original canonical-correlation-based distance (CC) of Moeur and Stage (1995), 483 

and the newer canonical-regression-based distance (CR) introduced by Stage and Crookston (2002).  The 484 

panels present both estimated means of [g(XTi) – g(XRj)]
2
 based on all data for comparison to means for the 485 

50% of the data separated by the longer distances. Only the Utah data show the alternative similarity 486 

measures to rank differently in the full data set than in the reduced data set containing only the  50% longer 487 

distances. Also, the Utah data set was the only one to show a distinct advantage to using one or the other of 488 

the canonical-based distances over the Mahalanobis distances.  And the differences would be even greater 489 
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if the non-forest data were masked because the Mahalanobis distances did slightly better at matching the 490 

zero data.  The result seems anomalous because the Utah data had the lowest canonical correlations 491 

between Y’s and X’s.  However, one of the merits of the canonical approach lies in its capability to ignore 492 

X’s that are irrelevant.  Moisen and Frescino (2002) found that several of the x’s were superfluous.  The 493 

Mahalanobis distance would have given these variables weights equal to the weights of the useful 494 

variables.  The other two data sets were obtained after extensive analysis by others that probably had 495 

already screened the X’s for utility.   496 

Conclusions 497 

   This report concerns the error properties of imputation processes used to fill in a data set by 498 

imputing values from a sample of intensively measured observation units to interspersed, less completely 499 

measured units.  The error statistics for the imputed, continuous-valued variables presented in this report 500 

are based on partitioning of the error components into measurement error, error inherent in the particular 501 

imputation method and the pure error not associated with the variables measured on all observation units. 502 

These statistics can assist in the design of inventories and their analysis with near-neighbor imputation 503 

methods.  It is now possible to consider the relative gains from reducing measurement error versus 504 

increasing the density of the sampled observation units. They also clarify comparisons to other inference 505 

methods such as regression or stratum-mean based estimators, and help to choose among alternative weight 506 

matrices in similarity measures.      507 
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Table Captions 535 

 536 

Table 1.  Statistics for three data sets used as examples. Number of coefficients to be estimated in relation 537 

to number of samples.     538 

Table 2.  Comparison between three example data sets of first four squared canonical correlations between 539 

Y’s and X’s. 540 

Table 3.  Table 3. Components of variance for three example data sets. Columns C – F are standardized by 541 

division by variance in column A  Column B and C are for a linear model used as y=f(X).  Columns D-F 542 

are obtained with a Mahalanobis distance function.  543 

  544 



 

 

22 

Table 1.  Statistics for three data sets used as examples. Number of coefficients to be estimated in relation 545 

to number of samples.     546 

 Tally Lake Users Guide Utah 

Number of Y variables 8 6 10 

Number of X’s (p) 21 12 12 

Number of reference obs. (n) 847 197 1076 

Significant canonical pairs (s) 7 5 4 

n/(s+p*s) 5.50 3.03 16.55 

 547 
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Table 2.  Comparison between three example data sets of first four squared canonical correlations between 548 

Y’s and X’s. 549 

 550 

Canonical 

Pair 

(m) 

Tally 

 Lake 

User’s 

Guide 

Utah 

1 0.697 0.686 0.450 

2 0.477 0.456 0.153 

3 0.325 0.376 0.109 

4 0.292 0.244 0.034 

 551 
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Table 3. Components of variance for three example data sets. Columns C – F are standardized by division 552 

by variance in column A  Column B and C are for a linear model used as y=f(X).  Columns D-F are 553 

obtained with a Mahalanobis distance function.  554 

Y-Variable 

Total 

variance of 

Y-variable 

in 

reference 

set 

Multivariate 

regression 

R2 

Squared error 

about regression 

of single Y 

SEE2  

1.-B 

Mean square 

between 

target and 

nearest 

reference for 

all pairs in 

MSD  

Mean square 

between target 

and nearest 

reference for 1/8 

of shorter 

distances 

(MMSD(0)) 

Calculated 

Distance 

component 

D −E 

 (A) (B) (C) (D) (E) (F) 

 Tally Lake 

Top height 566.669 0.6713 0.3287 0.6990 0.2837 0.4153 

Vlg’AF 8.69601 0.4716 0.5284 1.0380 0.8461 0.1919 

Vlg’ES 9.01080 0.4322 0.5678 1.2098 1.4075 -0.1977 

Vlg’DF 7.03682 0.3696 0.6304 1.0064 0.6292 0.3772 

CCover 222.797 0.2999 0.7001 1.1628 1.0061 0.1567 

Vlg’L 6.66466 0.2556 0.7444 1.3189 0.9271 0.3918 

Vlg’LP 8.18933 0.1956 0.8044 1.4893 1.0475 0.4418 

Vlg’PP 0.71893 0.1076 0.8924 1.1779 0.6486 0.5294 

 Users Guide 

TotBA 2822.19 0.5917 0.4083 0.7695 0.735 0.0345 

LN-FIR 4.43945 0.5440 0.4560 0.8217 0.087 0.7347 

TopHT 292.968 0.4839 0.5161 0.9453 0.287 0.6583 

LN_PINE 7.0639 0.3858 0.6142 1.0768 0.087 0.9898 

LN-BADF 1.85368 0.3548 0.6452 0.9557 0 0.9557 

LN-BALP 3.55926 0.3225 0.6775 1.2927 0.6712 0.6215 

 Utah 

MAICF  684.346 0.3567 0.6433 1.1259 0.3334 0.7925 

NVOLTOT 2064882. 0.3142 0.6858 1.3522 0.7868 0.5654 

NVOLMER   1546287. 0.2976 0.7024 1.3472 0.8143 0.5329 

BA  4211.15 0.2736 .07264 1.3271 0.7525 0.5746 

CRCOV  779.175 0.2621 0.7379 1.4426 0.8551 0.5876 

STAGECL  3746.17 0.2528 0.7472 1.3367 1.0754 0.2613 

NGRWCF 905.920 0.2434 0.7566 1.4868 2.1123 -0.6255 

BIOTOT  636.018 0.2390 .07610 1.4758 0.5886 0.8872 

NGRWBA  0.75238 0.2280 0.7720 1.5302 1.0740 0.4562 

QMDALL  19.5868 0.1711 0.8289 1.6427 0.6462 0.9965 

 555 
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Figure Captions 556 

Figure 1. Error components for imputing yRj (e.g. species volume) to a target observation at xTi from one of 557 

two reference observations in a one dimensional space of X (e.g. elevation).  Pure error (εPi) is the vertical 558 

distance from yi* to the dashed line g(x).  Measurement error (εYi) is the vertical distance between yi* and yi.  559 

Model lack-of-fit  (εL(Xj) ) is the vertical separation between the dashed g(X) and solid f(X) lines.   560 

 561 

Figure 2.  Proportion of zero values in example data sets. 562 

 563 

Figure 3.  Partitioning of relative variance of imputed values (SEI equation (13)) for Mahalanobis distance 564 

function.  Variables within a data set are ordered from left to right by increasing SEE. Values standardized 565 

by division by attribute variance. 566 

 567 

Figure 4. Distance error component of imputation (plotted as its negative) compared to lack of fit of a linear 568 

regression, and pure error plus measurement error.  Clear portion of the bar is amount of error that would 569 

be added to lack of fit to make expression (23) equal zero.  Stippled bar is remaining portion of pure error 570 

plus measurement error.  Variables within a data set are ordered from left to right by increasing SEE for a 571 

linear regression model. Values standardized by division by attribute variance.   572 

 573 

Figure 5a. Tally Lake Comparison of distance components (10) for two canonical-correlation-based 574 

distance functions with Mahalanobis distance function. Variables within a data set are ordered from left to 575 

right by increasing SEE.  576 

 577 

Figure 5b. Users Guide. Comparison of distance components (10) for two canonical-correlation-based 578 

distance functions with Mahalanobis distance function.  Variables within a data set are ordered from left to 579 

right by increasing SEE.  580 

 581 
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Figure 5c.  Utah. Comparison of distance components (10) for two canonical-correlation-based distance 582 

functions with Mahalanobis distance function.  Variables within a data set are ordered from left to right by 583 

increasing SEE.  584 
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