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This package vignette is designed as a hands-on tutorial for estimating temporal
exponential random graph models (TERGMs) (Desmarais and Cranmer 2010, 2012b;
Hanneke et al. 2010) and assessing goodness of fit and predictive performance (Cranmer
and Desmarais 2011; Leifeld and Cranmer 2014) using the xergm package (Leifeld et al.
2014) for the statistical computing environment R (R Core Team 2014).

The xergm package is compatible with the syntax of statnet (Handcock et al. 2008;
Goodreau et al. 2008; Morris et al. 2008) and uses some of its functions, particularly
from the ergm package (Hunter et al. 2008) and the network package (Butts 2008).

A basic familiarity with ERGMs and their estimation, as in ergm, and network
data management, as in statnet, is assumed and thus not treated extensively in this
tutorial.

Throughout the examples provided below, a dataset collected by Andrea Knecht
on the dynamics of adolescent friendship networks in a Dutch school class is used as
an illustration (Knecht 2006, 2008; Knecht et al. 2010; Steglich and Knecht 2009).
This dataset is delivered with the xergm package and is the classic textbook example
for estimating stochastic actor-oriented models (SAOM) using SIENA and RSiena
(Ripley et al. 2011; Snijders et al. 2010).

1 TERGMs without cross-temporal dependencies

1.1 Preparatory steps

Several R packages should be loaded for running the examples presented below: the
texreg package (Leifeld 2013) will be used for displaying estimation results; the statnet

1



suite of network analysis packages provides basic functions for handling network data
(Handcock et al. 2008), and the xergm package (Leifeld et al. 2014).

R> require("statnet")

R> require("texreg")

R> require("xergm")

After loading the packages, we attach the Knecht dataset to the workspace. The
dataset contains four waves of a friendship network (stored as matrices in a list object
called friendship) and several nodal and dyadic covariates (see help(knecht) for
details). Of particular interest are the sex of the pupils (stored in a data frame called
demographics) and a network called primary, which contains dyadic information on
which pupils co-attended the same primary school.

R> data("knecht")

1.2 Exploring the dataset

To get a first impression of the networks, we plot them using methods from the statnet
suite of packages. The resulting networks are shown in Figure 1.

R> par(mfrow = c(2, 2), mar = c(0, 0, 1, 0))

R> for (i in 1:length(friendship)) {

+ plot(network(friendship[[i]]), main = paste("t =", i),

+ usearrows = FALSE, edge.col = "grey50")

+ }

We would like to explain edge formation at these four time steps, first by assuming
independence between the time steps (this section) and in subsequent examples by
modeling network evolution as a process with cross-temporal dependencies (sections 2
and 3).

For the sake of simplicity, we replicate a basic model described in Snijders et al.
(2010). In this model, the topology (i. e., the geometric shape) of the networks is
determined by the following quantities (with the corresponding model terms of the
ergm package given in brackets—see help("ergm-terms") for details):

• a baseline probability of establishing edges (edges),

• the indegree and outdegree of the nodes in the network (computed using the
degree function and modeled using nodeocov and nodeicov terms),

• the sex of ego, the sex of alter, and sex match of ego and alter (nodeofactor,
nodeifactor, and nodematch, respectively),

• primary school co-attendance (edgecov),
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Figure 1: The four networks in the Knecht dataset.

• the tendency of edges to be reciprocated (mutual),

• and the number of cyclic triples, transitive triples, and transitive ties (ctriple,
ttriple, and transitiveties, respectively).

1.3 Preprocessing the networks and covariates

Before we can estimate a model containing these terms, the data must be preprocessed.
Preprocessing can take several different forms and is often necessary to ensure that the
data matrices containing variable information are conformable at any given temporal
wave and/or across temporal waves. Data matrices may not be conformable because of
missing values, node entry, or node exit (known as composition change).

At each time step, all covariates and the dependent network should be composed of
the same set of nodes. Because the btergm estimation function in the xergm package
cannot handle any missing values, something must be done to address such values. One
has several options. Perhapse most common is to replace NA values with the modal value
(usually 0—this approach is also taken by RSiena). This makes sense in situations
where one can assume that all present edges will be observed, though we may not have a
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specific recording of 0 for absent edges. Note, however, that the erronious introduction
of 0s where edges actually exist is a form of measurement error that will result in biased
statistical models. A second option is to remove nodes with incomplete edge profiles
from the dataset. This strategy, at best, is inefficient because removing a node—perhaps
because of a single missing value in one of its edges—requires removing all incoming
and outgoing ties from that node. In other words, the network nature of the data
means that an entire row and column of the data matrix will be removed any time
we remove a node. This compounds the inefficiency of the casewise deletion process
compared to that same inefficiency in a normal, rectangular, data frame. At worst,
casewise deletion of nodes with missing edges results in bias. Bias will occur from this
proceedure any time the occurrence of missing edges is not completely random (e. g.,
if the occurrence of missing values is related to any attributes of the edge or node,
observed or unobserved, bias will be the result). Lastly, missing edge values may be
imputed with one of several techniques from a new and budding literature (Handcock
and Gile 2010; Koskinen et al. 2013; Robins et al. 2004). With this cautionary note,
the xergm package provides the handleMissings function to aid the user in removing
or imputing missing data iteratively.

Moreover, when cross-temporal dependencies are modeled (such as delayed reci-
procity, delayed triadic closure, a lagged dependent network, or edge stability over
time), consecutive time steps should feature the same set of nodes. This is not neces-
sarily the case because new nodes may join the network, there may be panel attrition,
or respondents may be absent during some waves of data collection. The xergm package
provides a function called adjust to adjust the dimensions of a matrix to the dimen-
sions of another matrix by matching row and column labels and removing rows and
columns from matrix A which are absent in matrix B as well as adding new NA-filled
rows and columns to matrix A where matrix B has additional nodes.

A third function, preprocess, serves to automatize both the handling of missing
data and the adjustment of matrix dimensions in a single call—it serves as an interface
to both functions. Before we can use the preprocess function, we must ensure that the
dependent networks and covariates have node labels because the networks are matched
on the labels. The preprocess function requires consecutive networks to be saved as
a list of matrices. The friendship networks are already provided as a list of matrices,
but the nodes are not labeled. Hence we have to make sure first that the matrices have
row and column names.

R> for (i in 1:length(friendship)) {

+ rownames(friendship[[i]]) <- 1:nrow(friendship[[i]])

+ colnames(friendship[[i]]) <- 1:ncol(friendship[[i]])

+ }

R> rownames(primary) <- rownames(friendship[[1]])

R> colnames(primary) <- colnames(friendship[[1]])

In the friendship matrices, missing data are marked as NA values, and the incoming
and outgoing edges of absent nodes (so-called structural zeroes) are marked by entries

4



of 10. In the next step, the preprocess function takes the friendship networks, replaces
missing entries by the modal value (here: 0), iteratively removes nodes that have rows
or columns with structural zeroes, and adjusts the friendship matrices at each time step
to the dimensions of the primary school network and the nodal sex covariate.

R> dep <- preprocess(friendship, primary, demographics$sex,

+ lag = FALSE, covariate = FALSE, na = NA,

+ na.method = "fillmode", structzero = 10,

+ structzero.method = "remove")

This command must be repeated for all covariates that have composition changes or
missing data or structural zeroes. In this example, none of the covariates has missing
data or composition change.

The first argument of the preprocess function is the list of matrices to be adjusted,
followed by several other objects (matrices, vectors or lists) to which the dimensions
of the first object shall be adjusted. If lag = TRUE is set, the object will be adjusted
across time steps. If the object to be adjusted is a covariate, covariate = TRUE should
be set. The combination of these arguments allows flexible preprocessing of the network
matrices. For example, lag = TRUE and covariate = FALSE adjusts the dimensions of
the second friendship matrix to the first primary matrix, the third to the second, and the
fourth friendship matrix to the third primary matrix. If lag = TRUE and covariate =

TRUE are specified, this will adjust the first friendship matrix to the second matrix and
so on, effectively generating a lagged dependent network for use as an edge covariate
to explain current network activity by previous network activity. Whenever the lag

= TRUE argument is set, one of the time steps is effectively lost due to the temporal
conditioning.

It should be noted that at least three time steps are required by the estimation
function to compute meaningful measures of uncertainty when a model with cross-
temporal effects is estimated. When no temporal conditioning is needed, two time
steps are sufficient for the estimation.

The new object, dep, should still have four time steps because lag = FALSE. More-
over, Node 21 dropped out of the panel after the second time step, hence the dimensions
of the dep object should be different from the dimensions of the friendship object.
We can verify this by calling:

R> length(dep)

R> sapply(friendship, dim)

R> sapply(dep, dim)

R> rownames(dep[[3]])

Next, the dimensions of the constant covariates have to be adjusted. We would like
to have three consecutive matrices per covariate, and these matrices should have the
same dimensions as the dependent network at time steps two, three, and four:
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R> primary.cov <- preprocess(primary, dep, demographics$sex,

+ lag = FALSE, covariate = TRUE)

R> sex.cov <- preprocess(demographics$sex, primary.cov, friendship,

+ lag = FALSE, covariate = TRUE)

The next step consists of converting the friendship matrices to network objects,
computing the square root of the outdegree and indegree centralities for each node at
every time step, and adding these centralities as well as the sex attribute as vertex
attributes to the networks.

R> for (i in 1:length(dep)) {

+ dep[[i]] <- network(dep[[i]])

+ odegsqrt <- sqrt(degree(dep[[i]], cmode = "outdegree"))

+ idegsqrt <- sqrt(degree(dep[[i]], cmode = "indegree"))

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "odegsqrt", odegsqrt)

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "idegsqrt", idegsqrt)

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "sex",

+ sex.cov[[i]])

+ }

1.4 Estimation

With these modifications, we are now able to estimate our first TERGM. As in cross-
sectional ERGM estimation, nodal covariates are usually provided as vertex attributes
of the dependent network, and dyadic covariates are provided as separate matrices or
networks. In a temporal setting, dyadic covariates can be either constant or time-
varying. Constant covariates can be provided as network or matrix objects. Time-
varying covariates can be provided as lists of networks or matrices. In the Knecht
example, primary is a constant covariate.

The TERGM is estimated with the btergm function, which implements the boot-
strapping proceedure outlined in Desmarais and Cranmer (2010) and Desmarais and
Cranmer (2012b) and stands for “bootstrapped TERGM.” The first argument of the
btergm function is a formula like in the ergm function, but accepting lists of networks
or matrices instead of a single network or matrix as the dependent variable. In all
other regards, the syntax of btergm and the syntax of ergm are identical. The sec-
ond argument, R, is the number of bootstrapping replications used for estimation. The
more, the better (but also slower). Options for parallel processing on multicore CPUs
or HPC servers are available (see help("btergm")). As a rule of thumb, at least 100
replications are necessary for testing purposes, while something on the order of 1,000
replications should be used for publication purposes.

R> model1 <- btergm(dep ~ edges + mutual + ttriple + transitiveties +

+ ctriple + nodeicov("idegsqrt") + nodeicov("odegsqrt") +

+ nodeocov("odegsqrt") + nodeofactor("sex") +
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+ nodeifactor("sex") + nodematch("sex") + edgecov(primary.cov),

+ R = 100)

A TERGM without cross-temporal dependencies is essentially a pooled ERGM. The
model and the coefficients therefore describe a single data-generating process that ap-
plies to all four time steps independently. The resulting btergm object model1 can be
displayed as follows.

R> summary(model1, level = 0.95)

==========================

Summary of model fit

==========================

Formula: dep ~ edges + mutual + ttriple + transitiveties + ctriple +

nodeicov("idegsqrt") + nodeicov("odegsqrt") + nodeocov("odegsqrt") +

nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

edgecov(primary.cov)

Bootstrapping sample size: 100

Estimates and 95% confidence intervals:

Estimate 2.5% 97.5%

edges -9.17591 -10.3639 -8.7508

mutual 2.96172 2.4417 3.6035

ttriple 0.21316 0.1252 0.3151

transitiveties 0.36794 0.2097 0.4245

ctriple -0.67677 -0.8976 -0.5030

nodeicov.idegsqrt 1.17509 1.0262 1.4656

nodeicov.odegsqrt -0.28432 -0.4917 -0.1686

nodeocov.odegsqrt 1.19846 1.1665 1.4125

nodeofactor.sex.2 0.60720 0.4753 0.7900

nodeifactor.sex.2 0.22578 0.1075 0.3598

nodematch.sex 1.76805 1.6078 2.1493

edgecov.primary.cov[[i]] 1.05123 0.7864 1.4567

By default, a 95 % confidence interval is reported around the estimates. This can
be changed by modifying the level argument. The primary term, for example, has an
estimate of 1.05, which means that going to primary school together increases the odds
of being friends later on by 100 · (exp(1.05)− 1) ≈ 186% on average conditional on the
rest of the network. The effect is significant because 0 is outside the confidence interval
of [0.79; 1.46]. See, for example, Desmarais and Cranmer (2012a) for further details on
interpretation of ERGMs and TERGMs.

7



1.5 Goodness-of-fit assessment

To assess the goodness of fit, statnet-style boxplots of simulated networks versus the
observed network(s) or measures of classification performance can be employed. For
either of these options, the gof function has to be called.

R> gof1 <- gof(model1, nsim = 25)

The nsim = 25 argument causes the gof function to simulate a total of 100 networks
(25 from each of the four time steps). Naturally, when estimating models for publication,
more simulations are preferable. Here, however, exposition is accomplished with fewer
simulations and less computing time. The resulting gof1 object can be printed to the
console in order to obtain comparison tables of the edge-wise shared partner, dyad-wise
shared partner, geodesic distance, indegree, outdegree, instar and outstar distributions
of the simulated versus the observed networks. Just like in the ergm package, this
comparison can be done visually by using the plot.btergmgof method (for the result,
see Figure 2). Interpretation of these plots is straightforward; the model is said to fit
better the closer the medians of the boxplots (based on the simulated networks) come
to the line that plots the actual value of these statistics in the observed network.

R> gof1

R> plot(gof1)

The model fit looks acceptable. The theme of the next section will be an alternative
model which takes into account cross-temporal dependencies.

2 Network evolution with temporal effects

It makes sense to conceive of consecutive measurements of a friendship network, and
indeed many longitudinally observed networks, as a process over time rather than in-
dependent phenomena. We therefore want the ability to control for friendship choices
at each previous time step (“memory”). Controlling for the history of the network is
straightforward; a lagged outcome network may be included and functions as an au-
toregressive term does in regression analysis. The meaning of a “memory” term can be
somewhat vague, and different types of memory terms may be preferred depending on
the density of the network and the substantive interest of the analyst. For networks of
medium density, a change statistic on a network that sums (xt−1

ij − xt
ij) over the dyad

ij would be 1 if xt−1
ij = 1 and −1 if xt−1

ij = 0. This would be a memory term in which
1s and 0s have the same effect (“edge stability”). Alternatively, one can include an
indicator for edge innovation (the creation of a new edge from t − 1 to t). Lastly, a
memory term that captures autoregression of edges (and ignoring non-edges) may be
useful for modeling sparse networks, where connection is a fairly rare event. Each of
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Figure 2: Goodness-of-fit assessment using statnet-style boxplots.

these memory terms capture somewhat different processes, and the choice of appropri-
ate memory terms will usually depend on the application. Different types of temporal
dependencies may also be used in conjunction with one another.

One may also theorize about other cross-temporal dependencies like single-period
delayed reciprocity, in which a directed edge formed at t − 1 is reciprocated in t. Op-
portunities for such temporally dependent network statistics are many, and a thorough
review of one’s options is beyond the scope of the present tutorial.
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2.1 Preprocessing the data

As in the last section, the matrices have to be preprocessed. If cross-temporal dynamics
are modeled, at least one time step is lost. One usually has to drop the first time step
from the list of dependent networks. The reason is that the estimation is conditioned on
the covariates at the previous time step each time, and for the first observed network,
there is simply no previous time step. Therefore, estimation starts at t = 2 and ends
at t = 4 in the friendship network example, and the covariates start at t = 1 and end
at t = 3.

To achieve this, we first create the list of dependent networks. If lag = TRUE

and covariate = FALSE are set, this will remove the first time step from the list of
friendship matrices. Moreover, the following code will remove structural zeroes and
adjust the dimensions of the matrices to the dimensions at the previous time steps.

R> dep <- preprocess(friendship, primary, demographics$sex,

+ lag = TRUE, covariate = FALSE, na = NA,

+ na.method = "fillmode", structzero = 10,

+ structzero.method = "remove")

Next, we create a lagged dependent network for use as a covariate because we can
assume that current friendship ties are often the result of previous friendship ties. The
following command will remove the last time step from the list of friendship networks
and adjust the dimensions of the matrices to the next time step.

R> lag <- preprocess(friendship, primary, demographics$sex,

+ lag = TRUE, covariate = TRUE, na = NA,

+ na.method = "fillmode", structzero = 10,

+ structzero.method = "remove")

Alternatively, we might consider modeling dyadic stability using a memory term.
An edge stability memory term is a matrix which contains cell entries of 1 where the
previous matrix has a 1 and−1 where it has a 0. This captures the stability of dyads (not
just ties as in the case of the autoregressive lag). We can generate a memory term by
specifying lag = TRUE, covariate = TRUE, and additionally memory = "stability"

in the preprocess function. There are several values the memory argument can take:
"stability" (for dyad stability, irrespective of 0 or 1 values), "autoregression" (for
positive autoregression, i. e., a lagged dependent network), and "innovation" (for edge
innovation, i. e., the tendency to form new ties between time steps).

R> mem <- preprocess(friendship, primary, demographics$sex,

+ lag = TRUE, covariate = TRUE, memory = "stability",

+ na = NA, na.method = "fillmode", structzero = 10,

+ structzero.method = "remove")
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We can confirm that there are three time steps for all objects and that there are 26,
25, and 25 nodes at these three time steps after the adjustment.

R> length(dep)

R> sapply(dep, dim)

R> sapply(lag, dim)

R> sapply(mem, dim)

Next, the dimensions of the covariates have to be adjusted. We would like to have
three consecutive matrices per covariate, and these matrices should have the same
dimensions as the dependent network at time steps two, three, and four:

R> primary.cov <- preprocess(primary, dep, demographics$sex,

+ lag = FALSE, covariate = TRUE)

R> sex.cov <- preprocess(demographics$sex, primary.cov, friendship,

+ lag = FALSE, covariate = TRUE)

Another plausible cross-temporal model term would be single-period delayed reci-
procity: If there is a tie from v′ to v at t − 1, does this increase the odds that we see
a tie from v to v′ at t? In other words, are friendship choices reciprocated over time
(possibly in addition to reciprocation that occurs within a time step)? To create such
a term, one can simply transpose the friendship matrices and create a lagged covariate
using the preprocess function:

R> delrecip <- lapply(friendship, t)

R> delrecip <- preprocess(delrecip, primary, friendship, lag = TRUE,

+ covariate = TRUE, na = NA, na.method = "fillmode",

+ structzero = 10, structzero.method = "remove")

Finally, the node attributes sex, indegree and outdegree must be added to the de-
pendent network, as in the previous section.

R> for (i in 1:length(dep)) {

+ dep[[i]] <- network(dep[[i]])

+ odegsqrt <- sqrt(degree(dep[[i]], cmode = "outdegree"))

+ idegsqrt <- sqrt(degree(dep[[i]], cmode = "indegree"))

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "odegsqrt", odegsqrt)

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "idegsqrt", idegsqrt)

+ dep[[i]] <- set.vertex.attribute(dep[[i]], "sex", sex.cov[[i]])

+ }

11



2.2 Estimation

We are now ready to estimate the second model, this time with temporal dynamics.
The syntax is the same as in section 1. The lagged network, the memory term, and
delayed reciprocity are added as edge covariates.

R> model2 <- btergm(dep ~ edges + mutual + ttriple + transitiveties +

+ ctriple + nodeicov("idegsqrt") + nodeicov("odegsqrt") +

+ nodeocov("odegsqrt") + nodeofactor("sex") +

+ nodeifactor("sex") + nodematch("sex") + edgecov(primary.cov) +

+ edgecov(delrecip) + edgecov(mem), R = 100)

As before, we can look at the results using summary(model2). For a direct com-
parison of the first and the second model, we can employ the screenreg, texreg, and
htmlreg functions from the texreg package:

R> screenreg(list(model1, model2))

==========================================================

Model 1 Model 2

----------------------------------------------------------

edges -9.18 * -9.54 *

[-10.36; -8.75] [-10.75; -8.72]

mutual 2.96 * 2.17 *

[ 2.44; 3.60] [ 1.84; 2.85]

ttriple 0.21 * 0.13 *

[ 0.13; 0.32] [ 0.03; 0.24]

transitiveties 0.37 * 0.32 *

[ 0.21; 0.42] [ 0.29; 0.39]

ctriple -0.68 * -0.55 *

[ -0.90; -0.50] [ -0.82; -0.42]

nodeicov.idegsqrt 1.18 * 1.28 *

[ 1.03; 1.47] [ 1.12; 1.57]

nodeicov.odegsqrt -0.28 * -0.13 *

[ -0.49; -0.17] [ -0.31; -0.04]

nodeocov.odegsqrt 1.20 * 1.50 *

[ 1.17; 1.41] [ 1.38; 1.73]

nodeofactor.sex.2 0.61 * 0.53 *

[ 0.48; 0.79] [ 0.38; 0.78]

nodeifactor.sex.2 0.23 * 0.29

[ 0.11; 0.36] [ -0.13; 0.51]

nodematch.sex 1.77 * 1.49 *

[ 1.61; 2.15] [ 1.30; 1.75]

edgecov.primary.cov[[i]] 1.05 * 0.42

12



Model 2

Bars denote CIs.

Reciprocity

Transitive triples

Transitive ties

Cyclic triples

Indegree popularity

Outdegree popularity

Outdegree activity

Ego = male

Both nodes = male

Delayed reciprocity

Memory term (edge stability)

Alter = male

Same primary school

0 1 2

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3: Estimates and confidence intervals of the TERGM with temporal dynamics.

[ 0.79; 1.46] [ -0.28; 0.71]

edgecov.delrecip[[i]] 0.67 *

[ 0.33; 1.50]

edgecov.mem[[i]] 0.78 *

[ 0.68; 0.90]

==========================================================

* 0 outside the confidence interval

The coefficients and confidence intervals can also be explored visually using the
plotreg function from the texreg package. The resulting forest plot is shown in
Figure 3.

R> plotreg(model2, custom.model.names = "Model 2", custom.coef.names =

+ c("Edges", "Reciprocity", "Transitive triples",

+ "Transitive ties", "Cyclic triples", "Indegree popularity",

+ "Outdegree popularity", "Outdegree activity", "Ego = male",

+ "Alter = male", "Both nodes = male", "Same primary school",
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Figure 4: Goodness-of-fit assessment of the second TERGM.

+ "Delayed reciprocity", "Memory term (edge stability)"),

+ omit.coef = "Edges")

With the inclusion of the three significant temporal effects, transitive triples and
one of the outdegree terms are no longer significant.

2.3 Goodness of fit

As in section 1, we assess the goodness of fit as follows.

R> gof2 <- gof(model2, nsim = 25)

R> plot(gof2)
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The boxplot diagrams (Figure 4) show a similar goodness of fit as in the first model
(shown in Figure 2). We seem to capture the data-generating process reasonably well
with both specifications. In the second specification, the k-star distributions are cap-
tured more accurately.

3 Out-of-sample prediction with TERGMs

For predicting the network at future time points and to gain more confidence in the
robustness of the results, we may consider out-of-sample prediction based on our model
specification. As an illustration, we will try to predict the network at t = 4 using a
model estimated from the three previous networks and based on the covariates at t = 3
and t = 4.

We can recycle the lists of objects prepared in the previous section. Particularly,
the first two out of the three elements of the dep object contain the friendship network
at time steps two and three while the first two items of the covariate lists contain time
steps one and two because we modeled cross-temporal dynamics (i. e., there is a lag).
Within the formula of the btergm estimation function, it is possible to index the lists to
work only with the first two items in each list because we want to reserve the last item
for comparison with the results. To verify that the coefficients are substantively similar
as before, we can print a table with the three models using the screenreg function
from the texreg package (Leifeld 2013).

R> model3 <- btergm(dep[1:2] ~ edges + mutual + ttriple +

+ transitiveties + ctriple + nodeicov("idegsqrt") +

+ nodeicov("odegsqrt") + nodeocov("odegsqrt") +

+ nodeofactor("sex") + nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary.cov[1:2]) + edgecov(delrecip[1:2]) +

+ edgecov(mem[1:2]), R = 100)

R> screenreg(list(model1, model2, model3))

Next, we can employ the gof function to simulate 100 networks from the model
and compare them to the observed network at t = 4. Remember that the model was
estimated based on time steps two to three for the dependent networks and one to two
for the lagged covariates (hence we used index [1:2] above). The dependent network
at t = 4 and the covariates at t = 3 can therefore be accessed by using the index [[3]]

when we use the gof function.

R> gof3 <- gof(model3, nsim = 100, target = dep[[3]], formula =

+ dep[[3]] ~ edges + mutual + ttriple + transitiveties +

+ ctriple + nodeicov("idegsqrt") + nodeicov("odegsqrt") +

+ nodeocov("odegsqrt") + nodeofactor("sex") +

+ nodeifactor("sex") + nodematch("sex") +

+ edgecov(primary.cov[[3]]) + edgecov(delrecip[[3]]) +

+ edgecov(mem[[3]]))
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ROC and PR curves
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Figure 5: Out-of-sample predictive fit of model 3 versus a null model.

This function call simulates 100 new networks based on model 3 (i. e., without the
last time step) and based on the covariates at t = 3 and compares the simulations to
the observed network at t = 4. The target argument specifies the network to which
we are comparing the simulations. The coefficients are taken from the model3 object.
We specify an explicit formula where we tell the gof function to simulate from the
covariates at t = 3.

Now we have four options to assess the predictive performance: we can display
boxplot diagrams as above (results not reported here), we can print the output of the
gof3 object to the R console (results not reported here), we can plot a receiver operating
characteristics (ROC) curve of the out-of-sample prediction of network ties, and we can
plot a precision-recall (PR) curve of the prediction.

R> plot(gof3, roc = FALSE, pr = FALSE)

R> gof3

R> plot(gof3, boxplot = FALSE, roc = TRUE, pr = FALSE,

+ roc.random = TRUE, ylab = "TPR/PPV",

+ xlab = "FPR/TPR", roc.main = "ROC and PR curves")

R> plot(gof3, boxplot = FALSE, roc = FALSE, pr = TRUE,

+ pr.random = TRUE, rocpr.add = TRUE)

The two curves are displayed in Figure 5. The dark red curve shows the ROC curve
for model 3 while the light red curve is the ROC curve of a random graph of the same
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size with the same density (i. e., the same model but only with an edges term). Model 3
clearly has a much better predictive performance than the null model. The dark blue
curve shows the PR curve for model 3 while the light blue curve is the PR curve of the
null model. PR curves are better suited for sparse networks because absent ties are not
taken into account. For the Knecht data, however, this is not an issue. The PR curve
also shows that the predictive fit is good.

ROC and PR curves can be used to compare different model specifications, also for
within-sample goodness of it. To condense the performance into a single measure, the
area under the curve (AUC) can be reported for both curves. AUC values are stored in
the btergmgof objects and are printed along with other goodness-of-fit measures when
the object (here: gof3) is called. They can be accessed directly by calling gof3$auc.roc

and gof3$auc.pr.

4 Other TERGM-related functions

The xergm package provides several other TERGM-related functions.
Checking for model degeneracy is possible using the gof function and specifying the

argument checkdegeneracy = TRUE (which is the default value). When the resulting
btergmgof object is printed, a table indicates which network statistics are problem-
atic. Note that at least 1,000 simulations should be created for the degeneracy check
(argument nsim = 1000).

The gof function thus serves to assess degeneracy, goodness of fit (via statnet-
like boxplot diagrams), and (out-of-sample or within-sample) predictive performance
using ROC and PR curves. For easy comparison of different types of models, there are
gof methods for btergm, ergm, and sienaAlgorithm objects (the latter produced by
RSiena) (Leifeld and Cranmer 2014).

The simulate.btergm method serves to create new networks given a btergm model
and a set of covariates. The confint.btergm method can be used to recompute confi-
dence intervals at arbitrary confidence levels. The same result can be achieved by using
the level argument of the summary.btergm method. The btergm.se function com-
putes standard errors and p values for the estimates. btergm.timesteps extracts the
number of distinct time steps from a btergm object. There is also a coef.btergm and
a nobs.btergm method for extracting the estimates and the number of observations,
respectively. The formula can be extracted from a btergm object (or from an ergm

object) using the getformula function.
Finally, the generic interpret function accepts ergm and btergm models and facil-

itates micro-level interpretation of the effects, as suggested by Desmarais and Cranmer
(2012a).
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