wq: Exploring water quality monitoring data

Alan D. Jassby and James E. Cloern
August 18, 2010

Contents
1 Introduction 1
2 Preparing data from an external file 3
3 The WgData class 4
4 Creating a WgData object 5)
5 Reshaping 7
6 Analyzing 8
6.1 Trends 8
6.2 Empirical Orthogonal Functions 10
6.3 Time series decomposition 15
6.4 Phenological parameters L L. 16
6.5 Miscellaneous plotting functions 20
7 Concluding Remarks 20

1 Introduction

This package contains functions to assist in the processing and exploration of data
from monitoring programs for aquatic ecosystems. The name wq stands for water
quality and reflects a focus on time series data for physical and chemical properties of
water, as well as the plankton. The package is currently intended for programs that
sample approximately monthly at discrete stations. Although our emphasis is mainly
estuarine and nearshore coastal ecosystems, most functions should be applicable for
a wide range of systems, from freshwater to open ocean. The package contains only
a few functions at this early stage, but we hope they are generally useful.

Y
: read
Y
\ clean / < result ’
Y Y
derive >| | generate >»| reshape > ar.1alyz.e&
visualize
ec2pss new tsMake decompTs
oxySol wgData ts2df eof
phenoPhase
plotTsTile
seaKen

Figure 1: A typical sequence of data analysis. Example functions from the package
are listed underneath the corresponding processes in the sequence.

The approach used here involves transformation of external data files into a stan-
dard format that existing functions can then handle easily. A conceptualization of
this sequence is illustrated in Figure 1. Water quality monitoring programs maintain
their data in a wide variety of formats, and the first step is to read data from an
external file and store it in a data frame. Often, the external data are stored or
at least transmitted in a comma- or tab-delimited format and can be easily handled
with read.table or one of its variants. Some cleaning or manipulation of the data set
may take place during the import process, but more substantive ones are often under-
taken immediately after. Typical modifications include renaming variables, dropping
unnecessary variables and observations, and coercing variables to different classes.
These modifications are chosen with regard to ease of use and the intended analysis,
but also in order to facilitate construction of an object with a standardized format.
Before constructing this object, though, we may want to derive new variables from
the original ones (e.g., salinity from conductivity). Next, we generate the standard-
ized “wq data” object, which is a member of the WgData class defined in this package.
We can then reshape into various forms—matrix, list, time series vector, data frame,
etc.—depending on the analysis. At this point, the data are finally in a form that we
can analyze and visualize. Some functions may be able to explore a WgData object

directly without any additional reshaping.

This package is intended to facilitate all of these activities. We will illustrate some
of the steps in Figure 1 using the accompanying data set sfbay. The exercise should
demonstrate most of the current capability of the package and make its use more
clear.

> library(wq)

2 Preparing data from an external file

Our starting point is a comma-delimited file downloaded on 2009-11-17 from the U.S.
Geological Survey’s water quality data set for San Francisco Bay (http://sfbay.wr.
usgs.gov/access/wqdata). The downloaded file, sfbay.csv, starts with a row of
variable names followed by a row of units, so the first two lines are skipped during
import and simpler variable names are substituted for the originals. Also, only a
subset of stations and years is used in order to keep sfbay small and the wq package
easier to download:

> sfbay <- read.csv("sfbay.csv", header = FALSE, as.is = TRUE,

+ skip = 2)

> names (sfbay) <- c("date", "time", "stn", "depth", "chl", "dox",

+ "spm", "ext", "sal", "temp", "nox", "nhx")

> sfbay <- subset(sfbay, stn 7inj, c(21, 24, 27, 30, 32, 36) & substring(date,
+ 7, 10) 7inj 1985:2004)

The resulting data frame sfbay is provided as part of the package, and its contents
are explained in the accompanying help file.

> head(sfbay)

date time stn depth chl dox spm ext sal temp nox nhx

6835 1/23/1985 1120 21 156 NA 17 1.6 28.15 NA NA NA
6836 1/23/1985 1120 21 23.4 NA 17 1.6 28.58 NA NA NA
6837 1/23/1985 1120 21 6 3.1 NA 18 1.6 28.91 NA NA NA
6838 1/23/1985 1120 21 12 3.4 NA 21 1.9 29.36 NA NA NA
6841 1/23/1985 1222 24 16.2 NA 17 1.6 27.42 NA NA NA
6842 1/23/1985 1222 24 5.6 NA 18 1.6 27.42 NA NA NA

The next step is to add any necessary derived variables to the data frame. An
initial data set will sometimes contain conductivity rather than salinity data, and we
might want to use ec2pss to derive the latter. That’s not the case here, but let’s
assume that we want dissolved oxygen as percent saturation rather than in concen-
tration units. Using oxySol and the convention of expressing percent saturation with
respect to surface pressure:

http://sfbay.wr.usgs.gov/access/wqdata
http://sfbay.wr.usgs.gov/access/wqdata

> x <- sample(1:nrow(sfbay), 10)
> sfbay[x, "dox"]

[1] 10.1 NA NA NA 8.0 NA 6.7 7.2 7.5 7.5

> sfbayl <- transform(sfbay, dox = round(100 * dox/oxySol(sal,
+ temp), 1))
> sfbayl[x, "dox"]

[1] 97.1 NA NA NA 100.9 NA 96.3 105.0 73.7 102.6

As will be seen below, much of the manipulation work needed to form the WgData
object is taken care of by a generating function in the package, and there is really
nothing more that needs to be done. In fact, not even the renaming of the variables
was necessary: only the initial read.csv function was required. This is partly due to
the way the original data were formatted in the downloaded file and more work may
be needed in other cases.

3 The WgData class

We define a standardized format for water quality data by creating a formal (S4)
class, the WgData class, that enforces the standards, and an accompanying generating
function wgData. The generating function acts on the suitably-modified data frame
and constructs a WgData object.

In order to avoid a large programming burden in the early stages of this package,
and also to let the design evolve efficiently by responding to specific needs that arise,
the initial WgData object is just a simple extension or subset of the data.frame and
can be treated as such. The only restrictions it makes is in the column names and
classes.

We decided to accommodate two types of sampling time, namely, the date either
with or without the time of day. The former are converted to the POSIXct class and
the latter to the Date class. A special class DateTime is created, which is the union of
these two time classes. This was done because the use of classes that combine date and
time of day require an additional level of care with respect to time zone (Grothendieck
and Petzoldt 2004). Almost all analyses of these low-frequency sampling programs
are concerned with only the date, and this additional burden and possible source of
error seems unwarranted if not necessary.

Surface location is specified by a site code, as the initial intention is to handle
discrete monitoring programs as opposed to continuous transects. Latitude-longitude
and distances from a fixed point are implicit in the site code and can be recorded
in a separate table (see sfbayVars). The depth is specified separately as a number.
Other information that may not be depth-specific, such as the mean vertical extinction

coefficient in the near-surface layer, can be located by a negative depth number for
now. The last two fields in the data portion of a WgData object are the variable
code and the value. The variables are given as character strings and the values as
numbers. As in the case of the sampling site, additional information related to the
variable code can be maintained in a separate table (see sfbayVars).

4 Creating a WgData object

Like all S4 classes, WgData has a generating function called new automatically created
along with the class. This function, however, requires that its data frame argument
already have a fairly restricted form of structure. In order to decrease the manipu-
lation required of the imported data, a separate, less restrictive generating function
called wgData is available. This function is more forgiving of field names and classes
and does a few other “cleanup” tasks with the data before calling new. Perhaps most
useful, it converts data from a “wide” format with one field per variable into the “long”
format used by the WgData class. For example, sfbay can be converted to a WgData
object with a single command:

A\

sfb <- wqData(sfbay, c(1, 3:4), 5:12, site.order = TRUE, type = "wide",
+ time.format = "Jm/%d/sY")
> head(sfb)

time site depth variable value

1 1985-01-23 s21 1 chl 5.6
2 1985-01-23 s21 2 chl 3.4
3 1985-01-23 s21 6 chl 3.1
4 1985-01-23 s21 12 chl 3.4
5 1985-01-23 s24 1 chl 6.2
6 1985-01-23 s24 2 chl 5.6

There is a summary method for this class that tabulates the number of observations
by site and variable, as well as the mean and quartiles for individual variables:

> summary (sfb)
date range: 1985-01-23 to 2004-12-14
$observations

chl dox spm ext sal temp nox nhx

s21 5164 3673 3903 159 5379 5385 135 135
s24 3340 2246 2405 146 3485 3480 123 123

chl

s36 OUBSO WD ® O O O O 0 GO omD oD

s32

o@D G OgE® OO0 d O

s30 ° o

s27

s24

s21

100 150 200

value

Figure 2: Plotting only one variable of a "WgData" object: chl.

s27 3927 2676 2848 150 4119 4118 142 142
s30 4496 2922 3106 147 4725 4720 165 164
s32 3560 2608 2763 129 3786 3777 141 141
s36 1576 1380 1438 23 1678 1676 101 101
$quartiles
Min. 1st Qu. Median Mean 3rd Qu. Max.
chl 0.10 2.100 3.70 7.479 7.600 221.20
dox 4.10 7.200 8.00 8.140 8.800 15.90
spm 1.00 11.000 20.00 34.050 35.000 983.00
ext 0.20 1.200 1.50 1.762 1.900 12.70
sal 3.80 22.330 26.78 25.330 29.570 32.59
temp 7.24 12.890 15.12 15.500 17.890 24.61
nox 0.01 12.380 22.69 28.550 39.220 247.80
nhx 0.01 2.252 5.14 5.525 8.398 20.78

Plotting a "WgData" object produces a page for each variable specified, each page
containing a strip plot of the values for each site (Figure 2). If no variables are
specified, then the first 10 will be plotted:

> plot(sfb, vars = "chl")

Apart from summary and plot, existing methods for data frames will produce an
object of class "data.frame" rather than one of class "WgData".

5 Reshaping

Historical water quality data are often suitable for analyzing as monthly time series,
which permits the use of many existing time series functions. tsMake is a function
for WgData objects that creates monthly time series for all variables at a single site or
for a single variable at all sites, when the option type = "ts.mon". All replicates are
first averaged and then the mean is found for the depth layer of interest. NA values
will be omitted. If you want to include them, temporarily assign them some unique
depth within the specified depth layer. If no layer is specified, all depths will be used.
The default time series plot is convenient for a quick look at the series (Figure 3):

> y <- tsMake(sfb, focus = "chl", layer = c(0, 5))

> yl1:6, 1

s21 s24 s27 s30 s32 s36
[1,] 4.500000 5.900000 NaN 1.300000 2.650000 6.250
[2,] NaN NaN NaN 1.600000 5.550000 NaN

[3,] 5.858333 10.654167 12.291667 12.787500 11.866667 40.100
[4,] 4.638889 5.916667 8.133333 .388889 11.4555666 4.525
[5,] 2.575000 2.058333 1.566667 .183333 1.725000 NaN
[6,] 3.025000 1.875000 1.441667 .133333 1.641667 3.000

= = 00

> tsp(y)
[1] 1985.000 2004.917 12.000
> plot(y, main = "Chlorophyll in San Francisco Bay")

If the option type = "zoo", then tsMake produces an object of class "zoo" containing
values by date of observation, rather than a monthly time series.

> head(tsMake(sfb, focus = "chl", layer = c(0, 5), type = "zoo"))

s21 s24 s27 s30 s32 s36
1985-01-23 4.500 5.90000 NaN 1.300000 2.650000 6.25
1985-02-27 NaN NaN NaN 1.600000 5.550000 NaN
1985-03-07 4.800 3.90000 5.200000 5.033333 5.166667 NaN
1985-03-13 2.600 9.35000 7.066667 5.066667 4.500000 NaN
1985-03-21 NaN 7.70000 13.300000 10.200000 4.700000 NaN

1985-03-29 10.175 21.66667 23.600000 30.850000 33.100000 40.10

Chlorophyll in San Francisco Bay

R T et RN
e A AT
e TRt Y T

Figure 3: Monthly mean chlorophyll (ug L™1) in 0-5 m layer of San Francisco Bay.

6 Analyzing

6.1 Trends

The function mannKen does a Mann-Kendall test of trend on a time series and provides
the corresponding nonparametric slope estimate. Because of serial correlation for most
monthly time series, the significance of such a trend is often overstated and mannKen
is better suited for annual series, such as this one for Nile River flow:

> mannKen(Nile)

$sen.slope
[1] -2.6

$sen.slope.pct

[1] -0.2828085

$p.value
[1] 3.658263e-05

$s
[1] -1387

$vars
[1] 112728.3

$miss
[1] O

Its main role in this package, however, is as a support function for the Seasonal
Kendall test of trend (Helsel and Hirsch 1992). The Seasonal Kendall test combines
information about trends for individual months (or some other subdivision of the year
such as quarters) and produces an overall test of trend for a series. mannKen collects
certain information on the pattern of missing data that is then used to determine if
a Seasonal Kendall test is warranted. In particular, there is an option to report a
result only if more than half the seasons are each missing less than half the possible
comparisons between the first and last 20% of the years (Schertz et al. 1991):

> chl27 <- sfbayChlal[, "s27"]

> seaKen(chl27)

$sen.slope
[1] 0.1083333

$sen.slope.pct
[1] 2.148168

$p.value
[1] 1.117981e-25

$miss
1 2

3

4

5

6

7

8

9

10

11

12

0.286 0.000 0.000 0.000 0.265 0.265 0.265 0.429 0.143 0.143 0.286 0.429

The main role, in turn, for seaKen in this package is as a support function for seaRoll,
which applies the Seasonal Kendall test to a rolling window of years, such as a decadal
window. seaKen is also subject to distortion by correlation among months, but the
relatively small number of years per window in typical use does not allow for an

accurate correction. One might therefore consider using a more conservative p-value
than usual as a significance threshold:

> seaRol1(chl27, w = 10)

sen.slope sen.slope.pct p.value

1987 0.0000 0.000 1.000
1988 0.0258 0.760 0.357
1989 NA NA NA
1990 NA NA NA
1991 NA NA NA
1992 0.0400 1.090 0.078
1993 NA NA NA
1994 NA NA NA
1995 0.0400 1.010 0.126
1996 -0.0217 -0.567 0.525
1997 -0.0364 -0.900 0.305
1998 NA NA NA
1999 NA NA NA
2000 0.1380 2.720 0.006
2001 NA NA NA
2002 NA NA NA
2003 0.2700 4.440 0.000
2004 0.2870 4.570 0.000
2005 0.3160 5.120 0.000
2006 0.2600 3.800 0.000
2007 0.3160 4.380 0.000
2008 0.3090 4.160 0.000
2009 NA NA NA

6.2 Empirical Orthogonal Functions

Empirical Orthogonal Function (EOF') analysis is a term used primarily in the earth
sciences for principal component analysis applied to simultaneous time series at dif-
ferent spatial locations. Hannachi et al. (2007) provides a recent comprehensive sum-
mary. The function eof in this package, based on prcomp in the stats package, scales
the time series and applies a promax rotation to the EOF's.

eof does not permit NAs and some kind of data imputation or omission will usually
be required. The function interpTs is handy for small data gaps. Here, we use it to
bridge gaps of up to three months. The interpolated series is then plotted in red and
the original series overplotted in blue (Figure 4).

> chl27 <- sfbayChlal[, "s27"]
> chl27a <- interpTs(chl27, gap = 3)

10

40
|

o _|
(4p]
©
8 Q-
=
(&)

il

I I I I I I I
1980 1985 1990 1995 2000 2005 2010

Figure 4: Interpolation of a monthly time series (interpolated data in red).

> plot(chl27a, col = "red", xlab = "")
> lines(chl27, col "blue")

eof requires an estimate of the number of EOF's to retain for rotation. eofNum
provides a guide to this number by plotting the eigenvalues and their confidence inter-
vals in a “scree” plot. The significance of each eigenvalue is also assessed using rule N,
which repeatedly computes eigenvalues of the correlation matrix for an appropriately-
sized random variable matrix and returns the 0.95 quantiles. Here, we apply eofNum
to annualized San Francisco Bay chlorophyll data and retain the stations with no
missing data, namely, the first 12 stations.

> chlal <- aggregate(sfbayChla, 1, mean, na.rm = TRUE)
> chlal <- chlall[, 1:12]
> eofNum(chlal, distr = "lognormal", reps = 2000)

These stations have similar coefficients for the first EOF and appear to act as one
with respect to chlorophyll variability on the annual scale (Figure 5). It suggests that
further exploration of the interannual variability of these stations can be simplified
by using a single time series, namely, the first EOF.

> el <- eof(chlal, n = 1)
> el

11

12 - 78.4

10-

rule N

6- e p<0.05
p>0.05

Eigenvalue

I I I
2 4 6 8 10

Rank

Figure 5: Figenvalues of the San Francisco Bay chlorophyll time series matrix.

$REQF

id EOF1
1 s21 0.2984840
2 s22 0.2875436
3 23 0.3074099
4 s24 0.3038324
5 s25 0.3013699
6 s26 0.2686399
7 827 0.3116476
8 528 0.2791966
9 s29 0.3042674
10 s30 0.2931426
11 s31 0.2549798
12 s32 0.2445793
$amplitude

id EOF1
1 1978 -3.71779761
2 1979 -3.31653011
3 1980 -3.66943342
4 1981 -2.94304599
5 1982 -2.72889938

12

30
31

1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

0.
-2.
.89260439
.30543129
.18310354
.38621346
.07971835
.90950909
.056696910
.71675623
.64605278
-2.
.32949446
.59126388
.86074181
.36503739
.70185298
.23687896
. 78555990
.53489367
.42194986
.40560267
.58759133
.27913918
.92929848
.84503308

|
N

O W o O, Ok, NWN WO

$eigen.pct

[1] 78.4 8.1

$variance

[1] 78.4

The function plotEof produces a graph of either the EOFs or their accompanying

time series.
(Figure 6).

05732382
02038749

17668147

In this case, with n = 1, there is only one plot for each such graph

7.0 3.5

1.4 0.5 0.3 0.3 0.2 0.2 0.1 0.1

> plotEof(el, type = "amp")

Principal component analysis can also be useful in studying the way different sea-
sonal “modes” of variability contribute to overall year-to-year variability of a single
time series (Jassby 1999). The basic approach is to consider each month as deter-
mining a separate annual time series and then to calculate the eigenvalues for the

13

4 - L

2_

EOF1

0_

amplitude

-2 - -

T T T T T T
1980 1985 1990 1995 2000 2005

Figure 6: Time series for the first EOF of the San Francisco Bay chlorophyll time
series matrix.

resulting 12 x n years time series matrix. The function ts2df is useful for expressing
a monthly time series in the form needed by eof. For example, the following code
converts the monthly chlorophyll time series for Station 27 in San Francisco Bay to
the appropriate data frame with October, the first month of the local “water year”,
in the first column, and years with missing data omitted:

> chl27b <- interpTs(sfbayChlal[, "s27"], gap = 3)
> chl27b <- ts2df(chl27b, monl = 10, addYr = TRUE, omit = TRUE)
> head(round(chl127b, 1))

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

1979 2.1 2.2 1.71.91.82.4 3.8 2.34.81.6 3.9 2.1
1980 1.2 1.11.21.31.92.110.2 3.42.11.11.41.6
1983 1.8 1.71.01.21.47.0 16.4 16.6 5.4 1.4 1.7 2.0
1984 1.51.51.41.92.83.0 9.8 3.51.21.72.32.9
1986 1.5 1.11.21.21.24.025.5 4.01.51.51.41.4
1987 1.31.21.11.41.45.1 5.9 5.12.91.72.02.0

The following example plots the EOFS from an analysis of this month x year
data frame for Station 27 chlorophyll. eofNum (not shown) suggested retaining up to
two EOFs. The resulting rotated EOFs imply two separate modes of variability for
further exploration, the first operating during May-Sep and the other during Nov-Jan
(Figure 7):

> e2 <- eof(chl27b, n = 2)
> plotEof(e2, type = "coef")

14

-06 -04 -02 00 02 04

I I I I I I
EOF2

Sep o
Aug

Jul
Jun
May
Apr
Mar
Feb
Jan
Dec
Nov
Oct

T T T T T T T T T T T T
-06 -04 -02 00 02 04

coefficient

Figure 7: Rotated EOF's for the San Francisco Bay Station 27 month x year chloro-
phyll time series.

6.3 Time series decomposition

An analysis of chlorophyll a time series from many coastal and estuarine sites around
the world demonstrates that the standard deviation of chlorophyll is approximately
proportional to the mean, both among and within sites, as well as at different time
scales (Cloern and Jassby 2010). One consequence is that these monthly time series
are well described by a multiplicative seasonal model: ¢;; = Cy;mje;;, where ¢;; is
chlorophyll concentration in year ¢ and month j; C' is the long-term mean; y; is the
annual effect; m; is the average seasonal (in this case monthly) effect; and ¢;; is the
residual series, which we sometimes refer to as the “events” component. The annual
effect is simply the annual mean Y; = (1/12) 332, ¢;; divided by the long-term mean:
y; = Y;/C. The average monthly effect is given by m; = (1/N) XX, M;;/Y;, where
M;; is the value for month j in year ¢, and N is the total number of years. The events
component is then obtained by €;; = ¢;;/Cy;m;.

The decompTs listed here accomplishes this multiplicative decomposition (an op-
tion allows additive decomposition as an alternative). It requires input of a time
series matrix in which the columns are monthly time series. It allows missing data,
but it is up to the user to decide how many data are sufficient and if the pattern of
missing data will lead to bias in the results. If so, it would be advisable to eliminate
problem years beforehand by setting all month values to NA for those years. There
are two cases of interest here: one in which the seasonal effect is held constant from

15

year to year, and another in which it is allowed to vary by not distinguishing a sep-
arate events component. The choice is made by setting event = TRUE or event =
FALSE, respectively, in the input. If no specific starting or ending year is given, the
input data will be extended to cover January of the earliest or December of the latest
year, respectively. The output of this function is a matrix time series containing the
original time series and its multiplicative model components.

The average seasonal pattern may not resemble observed seasonality in a given
year. Patterns that are highly variable from year to year will result in an average
seasonal pattern of relatively low amplitude (i.e., low range of monthly values) com-
pared to the amplitudes in individual years. An average seasonal pattern with high
amplitude therefore indicates both high amplitude and a recurring pattern for indi-
vidual years. The default time series plot again provides a quick illustration of the
result (Figure 8):

> chl27 <- sfbayChlal[, "s27"]
> d1 <- decompTs(chl27)
> plot(dl, nc = 1, main = "Station 27 Chl-a decomposition")

The average seasonal pattern does not provide any information about potential
secular trends in the pattern. A solution is to apply the decomposition to a moving
time window. The window should be big enough to yield a meaningful average of
interannual variability but short enough to allow a trend to manifest. This may be
different for different systems, but a decadal window can be used as a starting point.
A more convenient, albeit restrictive, way to examine changing seasonality is with the
dedicated function plotSeas. It divides the time period into equal intervals and plots
a composite of the seasonal pattern in each interval. It also warns of months that
may not be represented by enough data by colouring them red (Figure 9). plotSeas
is an easy way to decide on the value for the event option in decompTs.

> plotSeas(chl27, num = 4)

6.4 Phenological parameters

phenoPhase and phenoAmp act on monthly time series or dated observations ("zoo"
objects) and produce measures of the phase and amplitude, respectively, for each
year. phenoPhase finds the month containing the maximum value, the fulcrum or
center of gravity, and the weighted mean month. phenoAmp finds the range, the range
divided by mean, and the coefficient of variation. Both functions can be confined to
only part of the year, for example, the months containing the spring phytoplankton
bloom. This feature can also be used to avoid months with chronic missing-data
problems.

16

Station 27 Chl—-a decomposition

1, \\AMU B A‘JLM’M@

30

original

grandmean

annual

296 10 14 1.8 4 5 6 70 10

seasonal
1
1 1

6 0.5

4
T N I B |

events

M}\IM "\\AJMMMWWIA) _MIVA»M . MM“WMAN |

1980 1985 1990 1995 2000 2005 2010

Time

Figure 8: Multiplicative decomposition of chlorophyll at Station 27 in San Francisco
Bay.

[lustrating once again with chlorophyll observations from Station 27 in San Fran-
cisco Bay:

> chl27 <- sfbayChlal[, "s27"]
pl <- phenoPhase(chl27)
> head(p1)

\

year max.time fulcrum mean.wt

11978 NA NA NA
2 1979 NA NA NA
3 1980 4 4.52 5.54
4 1981 NA NA NA
5 1982 NA NA NA
6 1983 NA NA NA

17

O O W N -

\

o O W N -

Figure 9: Composites of seasonal pattern in chl127 for four multi-year intervals.

[1978,1986]

30-

value
N
o
1

10-

Prrrrrrrrnnd
Jan Apr Jul Oct

(1986,1994]

Trrrrrrrnt
Jan Apr Jul Oct

p2 <- phenoPhase(chl127, c(1, 6))
head(p2)

year max.time fulcrum mean.
3.
4.
3.

p3 <- phenoAmp(chl127, c(1,

3.37
3.94
3.99

range range.mean

1978 3
1979 6
1980 4
1981 NA
1982 4
1983 NA
head (p3)

year

1978 4.450000
1979 3.033333
1980 8.900000
1981 NA
1982 6.509444
1983 NA

1.530086
1.074803
2.538827
NA
1.122560
NA

o

wt
58
01
90
NA
.75
NA
6))
cv
.5228641
.4260272
.9578382
NA
.4564730
NA

Using the actual dated observations:

18

(1994,2001]

rrrrrrrrrnnd
Jan Apr Jul Oct

(2001,2009]

Prrrrrrrrnnd
Jan Apr Jul Oct

> zchl <- tsMake(sfb, focus = '"chl",
> head(zchl)

layer = c(0, 5), type = "zoo")

s21
500
NaN
800

s24
5.90000

NaN
3.90000
600 9.35000
NaN 7.70000
175 21.66667

s27
NaN
NaN
5.200000
7.066667
13.300000 10.
23.600000 30.

s30
300000

s32
.650000
600000 .550000
033333 5.166667
066667 4.500000 NaN
200000 4.700000 NaN
850000 33.100000 40.10

s36
6.25
NaN
NaN

1985-01-23
1985-02-27
1985-03-07 4.
1985-03-13 2.
1985-03-21
1985-03-29

4. 1. 2
1. 5
5.
5.

10.

>
>

O WN -

zchl27 <- zchl[, 3]
head (phenoPhase (zch127))

year
1985
1986
1987
1988
1989
1990

max.time
1985-03-29
1986-04-29
1987-04-16
1988-04-14
1989-03-01
1990-04-12

fulcrum
1985-03-31
1986-04-25
1987-05-13
1988-04-27
1989-04-12
1990-04-30

mean.wt
1985-04-19
1986-04-27
1987-05-18
1988-06-09
1989-04-12
1990-04-21

head (phenoPhase(zch127, c(1, 6), out = "doy"))

year max.time fulcrum mean.wt n

1 1985 88 85 94 11
2 1986 119 111 109 15
3 1987 106 106 107 12
4 1988 105 84 98 7
5 1989 60 86 87 18
6 1990 102 106 98 10
> head(phenoPhase(zch127, c(1, 6), out = "julian"))

year max.time fulcrum mean.wt n

1 1985 5566 5563 5572 11
2 1986 5962 5954 5952 15
3 1987 6314 6314 6315 12
4 1988 6678 6657 6671 7
5 1989 6999 7025 7026 18
6 1990 7406 7410 7402 10

19

0.89

|| | .
[1]
BN BN ||]
N N =I H__BEEEEEN
] [|

T T
1980 1985 1990 1995 2000 2005

Figure 10: Image plot of monthly log-anomaly time series for Station 27 chlorophyll.

6.5 Miscellaneous plotting functions

plotTsTile plots a monthly time series as a month x year grid of tiles, with color
representing magnitude. The data can be binned in either of two ways. The first
is simply by deciles. The second, which is intended for log-anomaly data, is by
four categories: Positive numbers higher or lower than the mean positive value, and
negative numbers higher or lower than the mean negative value. In this version of
plotTsTile, the anomalies are calculated with respect to the overall mean month.

> chl127 <- sfbayChlal[, "s27"]
> plotTsTile(chl27)

This plot shows clearly the change in autumn-winter chlorophyll magnitude after 1999
(Figure 10).

7 Concluding Remarks

In the near future, this package will remain focused on typical data sets that have ac-
cumulated in long-term coastal water quality monitoring programs, namely, those col-
lected at a frequency of about 10! to 102 times per year at 10! to 102 sites. Aside from
incremental revision and addition of specific functions, the main structural change en-
visioned is in the class definitions for data objects.

In this regard, it is helpful to examine what constitutes a water quality observa-
tion, i.e., the essential components of this class. The minimum information typically
needed is of four kinds: the location, the time, the analyte and the observed value. As
discussed in Section 3, additional information about the location and the analytical
method is inherent in the unique codes used for each location and analyte. Some-
times, however, it may be more convenient to include additional information explicitly
with the actual observations, such as censoring limits that may change throughout a

20

project. Other complications are introduced by the different ways in which location,
time, and even observed values can be recorded. For example, surface location infor-
mation can come in the form of site names, latitude-longitude coordinates or distance
along the axis of a channel from some fixed point. Observed values may be numbers,
numeric ranges or discrete classifications. Ideally, one wants each of the basic four
kinds of information to accommodate all of the major possible forms.

An obvious extension of the WgData object would be to include additional slots
for site and variable metadata, so that there is no ambiguity about the availability of
this information. A more significant change would be to define classes for the fields
described above as superclasses of basic classes. For example, a site class could
accommodate factors, numeric vectors or matrices. Location could then be given by
discrete site name, z position as distance from a fixed point, or z and y positions
as latitude and longitude. Similarly, depth could accommodate factors or numeric
vectors, the former as names of depth layers (“top 5 m”) or as non-numeric depths
(“just below surface” or "bottom”).

Ultimately, the package direction will be driven by the needs of people actually
using it. Suggestions for revisions and additions are welcome.

References

CLOERN, J. E., AND A. D. JAssBY. 2010. Patterns and scales of phytoplankton
variability in estuarine-coastal ecosystems. Estuaries and Coasts 33: 230-241.

GROTHENDIECK, G., AND T. PETZOLDT. 2004. R help desk: Date and time classes
in R. R News 4: 29-32.

HannAcHI, A., I. T. JOLLIFFE, AND D. B. STEPHENSON. 2007. Empirical orthogo-

nal functions and related techniques in atmospheric science: A review. International
Journal of Climatology 27: 1119-1152.

HELSEL, D., AND R. HIRSCH. 1992. Statistical methods in water resources. Elsevier.

JAssBY, A. D. 1999. Uncovering mechanisms of interannual variability in ecological
time series, pp. 285-306. In K. Scow, G. Fogg, D. Hinton, and M. Johnson [eds.],
Integrated assessment of ecosystem health. CRC Press.

ScHERTZ, T. L., R. B. ALEXANDER, AND D. J. OHE. 1991. The computer program
EStimate TREND (ESTREND), a system for the detection of trends in water-
quality data. Water-Resources Investigations Report 91-4040, U.S. Geological Sur-
vey.

21

	Introduction
	Preparing data from an external file
	The WqData class
	Creating a WqData object
	Reshaping
	Analyzing
	Trends
	Empirical Orthogonal Functions
	Time series decomposition
	Phenological parameters
	Miscellaneous plotting functions

	Concluding Remarks

