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1 Introduction

1.1 Background & Computational history

Whole genome analysis is receiving wide attention in the statistical genetics community.
In the context of plant breeding experiments the focus is on quantitative trait loci (QTL)
which attempt to explain the link between a trait of interest and the underlying genetics
of the plant. Many approaches of QTL analysis are available such as marker regression
methods (Hayley & Knott, 1992; Martinez & Curnow, 1992) and interval mapping (Zeng,
1994; Whittaker et al., 1996). These methods are common place in QTL software and are
available for use in R packages such as Karl Bromans qtl package (Broman & Wu, 2014).
This particular suite of software is also complemented with a book (Broman & Sen, 2009)
which has been favourably reviewed (Zhou, 2010).

There has also been some focus on the use of numerical integration techniques for the
analysis of QTL. Xu (2003) and Zhang et al. (2008) suggest the use of Bayesian variable
shrinkage and utilise Markov chain Monte Carlo (MCMC) to perform the analysis. An
MCMC approach is also adopted in the R package qtlbim (Yandell et al., 2005). The
package builds on the qtl package and the Bayesian paradigm allows an extensible list of
trait types to be analysed. The package also makes use of the new model selection tech-
nique, the Deviance Information Criterion (Shriner & Yi, 2009), to aid in identifying the
correct QTL model. Similarly, a non-MCMC approach is adopted in the BayesQTLBIC
package (Ball, 2010) where the QTL analysis involves the use of the Bayesian Information
Criterion (Schwarz, 1978) as a QTL model selection tool.

Unfortunately many of the aforementioned methods and their software lack the ability to
account for complex extraneous variation usually associated with plant or animal based
QTL studies. Limited covariate additions are possible in R package qtlbim and through
the inventive on-line GridQTL software which uses the ideas of Seaton et al. (2002).
Kang et al. (2008) uses linear mixed models in the R package EMMA but it does not
allow for extraneous random effects and possible complex variance structures that may
be needed to capture environmental processes, such as spatial layouts, existing in the
experiment.
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1.2 WGAIM and software package

In this vignette we discuss the whole genome average interval mapping (WGAIM) ap-
proach of Verbyla et al. (2007) and its related software, the R package wgaim. The
package can be downloaded from the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=wgaim. This approach allows the simultaneous
modelling of genetic and non-genetic variation through extensions of the linear mixed
model. The extended model allows complex extraneous variation to be captured as well
as simultaneously incorporating a whole genome analysis to detection and selection of
QTL using a linkage map. The underlying linear mixed modelling analysis is performed
computationally using the R package ASReml-R. The simulation results in Verbyla et al.
(2007) show that WGAIM is a powerful tool for QTL detection and outperforms more
rudimentary methods such as composite interval mapping. As it incorporates the whole
genome into the analysis it eliminates the necessity for piecemeal model fitting along the
genome which in turn avoids the use of model selection criteria or thresholding to control
the number of false positive QTL. In wgaim the false positives are controlled naturally
by assuming a background level of QTL variation through a single variance component
associated with a contiguous set of QTL across the whole genome. This parameter can
then be tested to determine the presence of QTL somewhere on the genome. As a result,
a less cumbersome approach to detecting and selecting QTL is ensured.

1.3 Software Prerequisites

The WGAIM method uses an extension of interval mapping to perform its analysis. For
convenience and flexibility, the wgaim package provides the ability to convert genetic
data objects created in the qtl package to objects for use in wgaim. The converted
objects retain a similar structure to ones created in qtl and therefore can still be used
with functions within the package. Users of wgaim need to be aware that it is a software
package intended for the analysis and summary of QTL and currently only contains min-
imal tools for exploratory linkage map manipulation. Much of the exploratory work can
be handled with functions supplied in the qtl package and users should consult its docu-
mentation if required. In addition, the interval mapping approach of Verbyla et al. (2007)
and its implementation in wgaim is also restricted to populations with only two distinct
genotypes. Some of these populations include, doubled haploid (DH), back-crosses and
recombinant inbred lines (RIL). To ensure this rule is adhered to, error trapping has been
placed in the appropriate functions.

Throughout the WGAIM procedure the underlying linear mixed model analysis uses the
highly flexible R software package ASReml-R, built as a front end wrapper for the stand
alone version, ASReml (Gilmour et al., 2009). This software allows the user the abil-
ity to flexibly model spatial or environmental variation as well as possible variation that
may arise from additional components associated with the experimental design. It uses
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an average information algorithm developed in Gilmour et al. (1995) that allows efficient
computing of residual maximum likelihood (REML) (Patterson & Thompson, 1971) es-
timates for the variance parameters. The use of REML estimation in the linear mixed
model context becomes increasingly necessary in situations where the data is unbalanced.
Much of its sophistication has been influenced from its common use in the analysis of
crop variety trials (Smith et al., 2001, 2005, 2006) where complex additional components
such as spatial correlation structures or multiplicative factor analytic models need to be
incorporated into the mixed model. If available, the software also allows complex pedigree
information to be included (Oakey et al., 2006). Many of these additional flexibilities in
ASReml have also established it as a valuable software tool in the livestock industries. In
more recent years it has been used as a core engine for more complex genetic analyses as
in Gilmour (2007), Verbyla et al. (2007) and Huang & George (2009). If you are affiliated
with an academic institution, the stand alone software and the R package ASReml-R
Discovery is now freely available through http://www.vsni.co.uk.
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2 WGAIM: Theory

2.1 WGAIM Method

The WGAIM approach is a forward selection method that uses a whole genome approach
to genetic analysis at each iteration. Following Verbyla et al. (2007), initially a working
model is developed that assumes a QTL in every interval. Thus for a given set of trait
observations y = (y1, ..., ¥y,) consider the model

y=X1+Zu,+Z,g+e, (2.1)

where 7 is a t length vector of fixed effects with an associated n x t explanatory design
matrix X and u, is a b x 1 length vector of random effects with an associated n x b design
matrix Z.. Typically, the distribution of u, ~ N(0,0*G(¢)) and is assumed mutually
independent to the residual vector e ~ N(0,0°R(¢)) with ¢ and ¢ being vectors of
variance ratios.

The vector g in (2.1) represents a r length vector of genotypic random effects with its
associated design matrix Z,. Let m be the total number of markers, ¢ be the number
of chromosomes, my, the number of markers on chromosome k, (k =1,...,¢), and ¢,
represent the parental allele type for line ¢ in interval 7 on chromosome k. In WGAIM,
¢ik;j = E1, reflecting two possible genotypes AA, BB for DH and RIL and AB, BB for
back-cross populations. The i¢th genetic component of this model is then given by

c mp—1

gi = Z Z i k:j0k:j + Dis (2.2)

k=1 j=1

where ay.; is QTL effect size assumed to have distribution ay.; ~ N(0,0%y,) and p; ~
N(0,0%7,) represents a polygenic or residual genetic effect not captured by the QTL
effects.

As in interval mapping the vector of QTL allele types are replaced by the expectation of
the QTL genotype given the flanking markers. Let my.; be the jth marker on the Ath
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chromosome then the vector of genotypic effects is
c mp—1
g = Z Z (T A+ Mg i1 Aejt ) Ak + P
k=1 j=1
= MAa + p, (2.3)

where Ag.;; and Ag.;y1,; are complicated expressions based on recombination fractions
between the marker and the QTL in the jth interval (see equation (5) and (6) on page
100 of Verbyla et al. (2007)). These parameters require estimation. Verbyla et al. (2007)
suggest applying a parameter reduction technique to produces a vector of genotypic effects
of the form

c mp—1
g= Z Z (M + My ji1) i + D
k=1 j=1

= MAga+ p, (2.4)

where \g.; = Okjjr1/2dk:j j+1(1 — Okjj+1) and Oy j+1, di:j j+1 are the the known recom-
bination fraction and Haldane’s genetic distance between marker j and 7 + 1 respectively
on the kth chromosome. Let Mg = MAg then My is an r x (m — ¢) fully specified
known matrix of pseudo-markers spanning the whole genome. A more detailed overview
of this decomposition and its derivation can be found in Verbyla et al. (2007). The full
working statistical model for analysis is then

y=X1t+Zu.+Z,Mra+ Z,p+e. (2.5)

After the fitting of (2.5) the simple hypothesis Hy : 7, = 0 is tested based on the statistic
—2log W = —2(log L — log Lg) where L and Lg is the residual likelihood of the working
model (2.5) with and without the random regression QTL effects, Z,a. Stram & Lee
(1994) suggest that under Hy, —2log ¥ is distributed as the mixture 3(x3 + x}) due to
the necessity of testing whether the variance ratio is on the boundary on the parameter
space.

If v, is found to be significant a putative QTL is determined using an outlier detection
method based on the alternative outlier model (AOM) for linear mixed models from Gogel
(1997) and formalised in Gogel et al. (2001). Verbyla et al. (2007) uses the AOM to develop
a score statistic for each of the chromosomes. For example, for the kth chromosome let
aro = ai + 8, where §y is a vector of random effects such that 8, ~ N (0,027, gL, —1)-
The full outlier model is

y=Xt+Zu.+Z,Mgra+Z,;Mg;d.+ Z,p+e, (2.6)

where Z . is the matrix Z, appropriately subsetted to chromosome k. The REML score
is then derived for 7, and evaluated at 7, = 0, namely

1 1 _7.
Uk(O) = —5 (tr(Ck,k) — 0_2—’720,%0%) s (27)
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where Cp = Z, ;M gPMgZ, ), with P=H ' - H'X(X"H'X)"'X"H' H =
0> (R+ZGZ"+7,Z ;M pM ,Z +~,Z,Z]) and best linear unbiased predictors (BLUPS)
ap = v.M ng;ku. This score has mean zero and this will occur exactly when the terms
in the parentheses of (2.7) are equal. Scores that depart from zero suggest a departure
from v, = 0. A simple statistic that reflects this departure can be based on the “outlier”

statistic
T -1~
£ 0292tr(Chp) T var (dy)

This statistic can therefore be calculated from the BLUPS of the QTL sizes and their
prediction error variances arising from the working model. In most cases mixed model
software, including ASReml-R used in wgaim, provide the ability to extract these
components for this use.

In a similar manner to the above once the chromosome with the largest outlier statistic
is identified, the individual intervals within that chromosome are checked. For example
if the largest ¢ is from the kth chromosome, a similar derivation can be followed for the
outlier statistic of the jth interval, namely

) Qi

A — 2.9

kij var(a.;) (2.9)
A putative QTL is then determined by choosing the largest ¢2, ; within that chromosome.
It must be stated at this point that although (2.6) is formulated to derive the theory for
QTL outlier detection there is no requirement to fit this model as the chromosome and
interval outlier statistics only contain components obtainable from a fit of the working
model proposed in (2.5). Thus there is only a minimal computational cost to determine
an appropriate QTL interval using this method.

Once a QTL interval is selected it is moved into the fixed effects of the working model
(2.5) and the process is repeated until v, is not significant. After the selection process is
complete the selected QTL intervals appear as fixed effects and the final model is

y=Xr+Z Mpaa,+Z.u.+Z,Mpg_sa_;+ Z,p+e, (2.10)

where M g, contain the the appropriate columns of M g for the selected QTL with a, as
fixed effects and M g _, contain the columns of genetic information for the unselected QTL
with a_g as a set of random effects. The preservation of the unselected QTL component
in the model ensures the selected QTL are tested within the appropriate stratum of the
hierarchical model. This complete approach is known as the WGAIM algorithm.

2.2 Marker vs Interval

The WGAIM method derived in the previous section uses a whole genome extension
of interval mapping. The matrix A in (2.3) can be viewed as a mapping matrix that

6
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appropriately maps the marker scores to midpoint pseudo-interval scores. In fact, the
genetic model proposed in (2.3) can be written as an approximate marker QTL regression
model

g=May+p (2.11)

where the marker QTL sizes are aj; = Aa. This suggests the marker QTL sizes have an
assumed distribution of the form a,; ~ N (O, aQ'yaAAT) and are correlated. Therefore an
analysis assuming the genetic QTL model (2.11) with independent marker QTL effects
will be less efficient than the interval mapping equivalent (2.3). Whole genome marker or
interval analysis is possible with wgaim.

2.3 Recent advances: WGAIM v1.0+

WGAIM is always being developed to improve its efficiency and stability as well as advance
its capabilities. Recent research by Verbyla et al. (2012) has shown the WGAIM method
can be improved in several ways. These are outlined below.

2.3.1 The outlier statistics

There is a short relevant point in Verbyla et al. (2012) concerning the use of the outlier
statistics in the WGAIM algorithm. After much scrutiny it was found that the use of
the chromosome statistic was flawed for small linkage groups. Consider the scenario
of two markers on a linkage group k. After converting the marker information to a
single interval the chromosome and interval outlier statistics have the property 2 = ¢2 ;.
Thus, the chromosome statistic, in this instance, is based on the information contained in
one interval. This interval statistic, in some circumstances, may bias the choice toward
chromosome £ and the selection of its only interval. Through simulation Verbyla et al.
(2012) shows that a better choice would be to only use the interval outlier statistic to
guide the selection process.

2.3.2 High dimensional analysis

Verbyla et al. (2012) show that provided there is some replication of genotypic individuals
existing in the data, high dimensional genetic marker components can be included in the
formulation of the working model (2.5). In fact, if the number of markers or intervals
exceeds the number of genetic individuals then a transformation is always warranted. This
ensures the maximum number of columns of marker or interval related information in the
working WGAIM model is equal to the number of genetic individuals. As expected, this
reduces computation times considerably for high dimensional problems. Further details
can be found in Verbyla et al. (2012).
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2.3.3 A random effects formulation

It is well known that there is (selection) bias involved in moving the selected QTL to
the fixed effects (Beavis, 1994, 1998). Xu (2003) provides a theoretical justification while
Melchinger et al. (1998) also conclude that sizes are inflated. There is a parallel in general
plant breeding analysis where genetic effects are assumed to be random rather than fixed.
This reduces the bias through shrinkage and provides a more realistic estimate of the size
of a genetic effect. Reducing the bias in QTL analysis would be desirable.

In a random effects formulation we assume that the ith selected QTL appearing in the
final model (2.10) has an assumed distribution a; ~ N(0,07 ). That is, the size of the
QTL effects are assumed to be random and have a different variance to the unselected
effects. This makes sense as a putative QTL effects exhibit variation from zero because
they are QTL. Thus individual QTL have their own distribution and non-QTL come from
another distribution. The two distributions differ in their variances and not their means.

2.4 Summary assessment of QTL

2.4.1 Fixed effects formulation

A summary of the additive QTL fixed effect can be obtained by considering an appro-
priate hypothesis test. Let a;; be the fixed effect estimate of the QTL ay; with variance
var(ay;) = J%Ev’kj. The test then considers the null hypothesis Hy : ay; = 0 against the
alternative hypothesis H, : ax; # 0. A z-statistic for this QTL is then calculated using
ij = akj
OPEV,kj

and therefore a p-value for the hypothesis test is
1— PI‘(—ij < Z< ij)
LOD scores are generally not necessary for WGAIM but can be calculated using

1
LODy; = §log10exp(z,3j)

2.4.2 Random effects formulation

In this formulation, the size of the QTL effect is a best linear unbiased prediction (BLUP).
It is no longer appropriate to test the hypothesis that the effect is zero in order to assess
its significance. Tests of hypotheses pertain to unknown parameters, and random effects
involve distributions of effects.
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To provide a measure of the strength of a QTL, the conditional distribution of the true
(random) QTL effect ay; say, given the data is used. That is under the normality assump-
tions for a linear mixed model,

arj|ys ~ N(ag;, UIQDEV,kj)
where y, is the component of the data free of fixed effects (Verbyla, 1990). The mean of
this conditional distribution is the BLUP of ay;, that is the estimated size of the QTL a5,
and in this instance, the variance o3y, is the prediction error variance (PEV) of ay;.
Thus the proper assessment of the impact of the QTL involves determining how far the
distribution is from zero. This can be quantified by calculating a probability somewhat
like a p-value, but for which values close to 0 indicate the QTL is strong. Consider the

~ 2
X2 _ Cij — Cij
kR —\ T
OPEV,kj

which has a chi-squared distribution with one degree of freedom. Zero on the original

statistic

2 =2 2 -
scale is ¢f; = G}, /0ppy,,; on the chi-squared scale and therefore
2 2
Pr(Xp; > c;)

provides a measure of strength of the putative QTL by how far az; is away from zero
relative to oppy ;. In a similar manner to the fixed effects formulation a LOD score can
be calculated using LODy; = log;gexp(c;)/2.

2.4.3 Genetic variance contribution of QTL

It is often of interest to calculate the genetic variance contribution of the selected putative
QTL. This requires the total genetic variance of the genetic effects expression

g = ME,sas + ME,—sa—s +p

Following Verbyla et al. (2012), to facilitate an expression for the variance the first term
on the RHS is replaced by (2.2). For a single line ¢ the variance then becomes
var(g;) = Z a? + Z Z(l — 20y ) aay + agmgiﬁsmm_s + 012,
=1 1=l

where mpg; _, is the ith row of M g ;. Using an average line effect, mg s = mgz Mg )T

and ignoring covariances between QTL the total variance across all lines is
S
var(g*) = Z ai +oimp s + 0,
1=1
The percentage contributions of the [th QTL to the genetic variance is then
a2
PV = 100—F—
var(g*)
Numerical calculations of the contributions are based on estimates of the parameters

obtained from the final QTL model.



3 The R package wgaim: A casual
walk through

A typical QTL analysis with wgaim can be viewed as series of steps with the appropriate
functions

Step 1. Fit a base asreml () model

Fit a base asreml() model as in (2.5) but without the added marker/interval genetic
information term Z,M ga using

baseModel <- asreml(..., data = phenoData)

(see the ASReml-R package for arguments . ..). The asreml () call allows very complex
structures for the variance matrices G(¢) and R(¢) through its random and rcov argu-
ments. This makes it an ideal modelling tool for capturing non-genetic variation, such as
design components and/or extraneous environmental variation.

For a comprehensive overview of the ASReml-R package, including thorough examples of
its flexibility, users should, in the first instance, consult the documentation that is included
with the package. Note: On any operating system that has ASReml-R installed,

the documentation can be found using the simple command asreml.man() in

R.

Step 2. Read in genetic data using read.cross()
Read in genetic data using
crossObj <- read.cross(...)

(see the qtl package for arguments ...). This function allows the reading in of genetic
information in a number of formats including files generated from commonly used genetic

10
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software programs such as Mapmaker and QTL Cartographer. At the current printing
of this document read.cross() accepts data in the following formats (from the help for
read.cross()),

e comma-delimited (“csv”)

e rotated comma-delimited (“csvr”)

e comma-delimited with separate files for genotype and phenotype data (“csvs”)

e rotated comma-delimited with separate files for genotype and phenotype data (“csvsr”)
e Mapmaker (“mm”)

e Map Manager QTX (“qtx”)

e Gary Churchill’s format (“gary”)

e Karl Broman’s format (“karl”).

For the exact requirements of all available file types and their nomenclature users should
consult the qtl documentation. The read.cross() function can also process more ad-
vanced genetic crosses. However, in wgaim the QTL analysis is restricted to populations
with two genotypic states. Thus users should be aware that the class of the cross object
needs to inherit one of "bc","dh","riself". This is checked when converting the object
in step 3.

The function read.cross () will also estimate map distances if they are not given in the
genetic file(s) before importation. It uses the Lander & Green (1987) hidden Markov
model for its estimation. This is an EM algorithm and therefore suffers from linear
convergence. On some occasions the algorithm may slowly converge or not converge at
all. In these instances users may need to investigate possible problems with their linkage
map before attempting to import.

Step 3. Convert genetic "cross" object to an "interval" object
This can be done using the wgaim function

intervalObj <- cross2int(crossObj, missgeno = "MartinezCurnow",
rem.mark = TRUE, id = "id", subset = NULL)

The function contains a number of arguments that provide some linkage map manipulation
before calculation of the interval information for each chromosome. They are detailed as

follows,

1 Sub-setting: The map can be subsetted by giving the subset argument a character
string vector of chromosome names.

11
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Table 3.1: Consensus marker outcomes for 3 markers in a doubled haploid population. The
consensus marker uses the name of the first marker in the set prefixed with a “(C)".

Markerl Marker2 Marker3 Markerl(C)

AA AA AA AA
BB BB BB BB
AA NA AA AA
BB NA BB BB
AA NA NA AA
BB NA NA BB
NA NA NA NA
AA BB AA NA

2 Co-locating markers: If rem.mark = TRUE then consensus markers are formed for
co-locating marker sets across the genome. This is achieved by combining markers
scores in the same marker set using the rules of Table 3.1. These rules have an
obvious extension to larger co-located marker sets. The final consensus marker uses
the name of the first marker with a “(C)” prefix to ensure the interpretation remains
simple post analysis. The markers involved in the formation of each consensus
markers, and their connections with one another, are returned as a named element
of intervalObj called "cor.markers".

3 Missing values: If missgeno = "MartinezCurnow", missing values within a chro-
mosome are imputed using the rules of Martinez & Curnow (1992). If missgeno =
"Broman" the they are calculated using the default values of argmax.geno() in the
qtl package

Note: This step is crucial in the process of QTL analysis using wgaim. The
imputation of the missing markers ensures the genetic data being passed into
wgaim.asreml () in the next step is a complete (i.e. no missing values) across
all linkage groups.

After the linkage map manipulation, for each chromosome, the imputed marker data
matrix is returned as an element of intervalObj. Along with this, several interval calcu-
lations are returned such as distances between markers, recombination fractions and most
importantly, the interval data matrix, M g defined shortly after (2.4).

The id argument is required to determine the unique rows of the genotypic data and is
passed to the imputed marker data and the interval data matrix. The final genetic data
object returned also retains the original class of the object for backward compatibility with
other functions in the qtl package as well as inherits the class "interval" for functionality
within the wgaim package.

12
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Step 4. Perform QTL analysis with wgaim()

QTLmodel <- wgaim(baseModel, phenoData, intervalObj, merge.by = NULL,

gen.type = "interval", method = "fixed", selection = "interval",
breakout = -1, Typel = 0.05, attempts = 5, trace = TRUE,
verboselLev = 0, ...)

The baseModel argument must be an asreml.object and therefore have "asreml" as
its class attribute. Thus a call to wgaim() is actually a call to wgaim.asreml(). This
stipulation ensures that an asreml () call has been used to form the base model in step 1
before attempting QTL analysis. An error trapping function, wgaim.default () is called
if the class of the base model is not "asreml". The second argument phenoData is a data
object of phenotypic data usually used in the analysis of the base model in step 1. The
intervalObj contains the imputed genetic marker and interval data obtained from a call
to cross2int () in the step 3. Thus intervalObj must be of class "interval".

The character string merge . by is then used to identify the appropriate column of phenoData
and intervalObj which to merge the two data sets. This merging differs depending on
whether the problem is high dimensional, (r X m — ¢) or not. Note: Unmatched el-
ements of merge.by are handled differently depending on whether they are
from the intervalObj or phenoData. If elements of merge.by exist in phenoData
and are unmatched with elements in intervalObj then they are kept to en-
sure completeness of the phenotypic data. If elements of merge.by exist in
intervalObj and not in phenoData they are dropped as there will be no pheno-
typic information available for that genetic line.

The gen.type allows the user to specify "interval" or "marker" depending on the
desired analysis. If gen.type = "marker" then the imputed marker matrix for each
linkage group in intervalObj is combined into a whole genome matrix before being
merged with phenoData. If gen.type = "interval" then the interval matrix for each
linkage group is combined and used instead.

Two choices are available for the method argument. If method = "fixed" the forward
selection algorithm moves the selected QTL to the fixed part of the model. This was the
only choice in earlier versions of wgaim and is part of the original algorithm discussed
in Verbyla et al. (2007). If method = "random" the forward selection algorithm uses the
updated algorithm of Verbyla et al. (2012), also discussed briefly in Section 2.3, and places
the selected QTL as an additive set of random effects.

The selection argument can either be "chromosome" or "interval". If "chromosome"

is chosen then selection of a QTL is based on outlier detection method discussed in Section
2 and in more detail in Verbyla et al. (2007). If "interval" is given then selection is

13
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based on outlier interval statistics only. Either selection procedure can be used with
both of choices of method discussed above. Note: All combinations of the arguments
discussed allow high dimensional genetic components to be added to the wgaim
call through intervalObj.

The breakout argument allows the user to breakout of the forward selection algorithm
at the desired iteration by providing a positive integer. The default of -1 ensures the
algorithm does not stop prematurely. TypeI argument allows users to change the sig-
nificance level for the testing of QTL effects variance component v,. As asreml() calls
output components of the fit to the screen there is an option to trace this to a file if
desired. The level of reporting can be changed using verboseLev. If verboselLev = 0
model fitting information and, if found, QTL locations will be printed. If verboseLev =
1 then the chromosome (if necessary) and interval outlier statistics from (2.8) and (2.9)
will be printed during each iteration.

Step 5. Summarise QTL with various method functions

summary (QTLmodel, intervalObj, LOD = TRUE, ...)

print (QTLmodel, intervalObj, ...)

tr(QTLmodel, iter = 1:length(object$QTL$effects), diag.out = TRUE, ...)

link.map(QTLmodel, intervalObj, chr, max.dist, marker.names = "markers",
list.col = list(q.col = "light blue", m.col = "red", t.col =
"light blue"), list.cex = list(t.cex = 0.6, m.cex = 0.6),
trait.labels = NULL, tick = FALSE, ...)

Various functions can be used to summarize and diagnostically check the QTL obtained
from a wgaim() analysis. The summary() function retrieves genetic marker information
and assesses the significance of the QTL effects (fixed or random). For an interval analysis
genetic information displayed includes chromosome and interval as well as name and
location of flanking markers. For a marker analysis, chromosome, name and location of
the closest linked marker are displayed. For both interval and marker analysis the size
of the QTL effect, its significance and percent contribution to the genetic variance are
also given. If method = "fixed" in the wgaim call then significance of the QTL effects
are assessed from p-values calculated using Section 2.4.1. If method = "random" then
probability values are calcualted using Section 2.4.2. LOD scores are also available for all
QTL effects.

The print() method provides a simple annotated summary of the QTL as they were
found during the wgaim() analysis.

tr () displays diagnostic information of the forward selection process underlying a wgaim()
analysis. It shows a summary of the Residual Maximum Log-Likelihood ratio tests of
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significance for the parameter v, at each iteration. There is also a triangular p-value or
probability value matrix that shows the significance of the QTL effects at each iteration.

Selected QTL can also be placed on a linkage map using link.map (). This function neatly
plots the linkage map and places "interval" or "marker" QTL at their appropriate
position. The function has added flexibility for colouring of QTL regions as well as colour
and size of printed text for all components of the map.

What is the best WGAIM analysis to use?

The different combination of the arguments, gen.type, method and selection in the
wgaim.asreml () call produce 6 distinct WGAIM QTL analyses. The question and an-
swers given below are to help guide users in choosing the appropriate combination of the
arguments for the genotypic and phenotypic data they have. It should be noted that some
of the answers provided are borne from gained knowledge and practical experience with
the algorithm and software since its inception.

Q: I have a high dimensional linkage map.
A: The wgaim package has been updated to allow high dimensional maps to be incorpo-
rated and analysed efficiently for all combinations of the arguments.

Q: My linkage map contains several linkage groups that have small numbers
of markers.

A: It is now known that using the using the chromosome outlier statistic wrongly favours
selection of QTL from small linkage groups. It is advised to use selection="interval"
in combination with the other arguments.

Q: My linkage map contains many linkage groups with sparsely spaced mark-
ers.

A: This would suggest the linkage map contains many wide intervals. It may be preferable
to perform a marker analysis using gen.type="marker" in combination with the other
arguments.

Q: My linkage map contains linkage groups with dense sets of markers.
A: With dense linkage maps QTL become tightly linked with markers. Therefore us-
ing either gen.type="interval" or gen.type="marker" will be efficient. The use of
selection="chromosome" may also provide slight improvement in QTL selection.

Q: I am interested in the least biased QTL effects for a particular trait.
A: Using method="random" ensures the selected QTL will be placed as additive random

components in the model. The QTL effects will therefore be shrunk and known to be less
biased.
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Q: It is suspected there are very closely linked QTL for a particular trait.

A: Very tightly linked QTL are difficult to determine and their simultaneous inclusion as
separate covariates in any model may produce biased effects for one or both of the linked
QTL. If these linked QTL are not of great interest users can adjust the exclusion.window
argument to ensure that a ¢cM region around each selected QTL is excluded from further
analysis. If closely linked QTL are found using wgaim it may also be useful to post
process the model by dropping each QTL independently and rechecking the results.
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All results from the examples presented in this vignette are reproducible with data sets
and scripts provided with the package. The scripts and vignette for your installation of
wgaim and R can be found by typing the commands

R> docpath <- system.file("doc", package = "wgaim")
R> list.files(docpath)

The listed files in this directory should match

[1] "CxRExample.R" "index.html" "RxKExample.R" "SxTExample.R" "wgaim.pdf"

If they do not match this or nothing is found then an upgrade of wgaim is needed. The
newest version can be found at http://CRAN.R-project.org/package=wgaim. The data
sets used in this vignette and available with the package are

R> data(package = "wgaim")

Data sets in package ’wgaim’:

genoCxR Genotypic marker data for Cascades x RAC875-2
doubled haploid population in R/qtl format

genoRxK Genotypic marker data for RAC875 x Kukri doubled
haploid population in R/qtl format

genoSxT Genotypic marker data for Sunco x Tasman doubled
haploid population in R/qtl format

phenoCxR Phenotypic Cascades x RAC875-2 zinc experiment
data

phenoRxK Phenotypic RAC875 x Kukri trial data

phenoSxT Phenotypic Sunco x Tasman trial data

They have been bundled with the package in two locations. Firstly, they are available in
the “data” directory of the package and therefore can be locally retrieved using the usual
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data() call. They have also been individually placed in an external data directory in
CSV format. The path to this directory is locatable by printing the result of the following
command

wgpath <- system.file("extdata", package = "wgaim")

Note that the three genotypic marker data sets in this directory are in raw CSV format.

4.1 RAC875 x Kukri data

This first example is used to illustrate the required steps for a successful wgaim analysis.
It shows a more in depth view of the phenotypic and genotypic data and in particular
focusses on the R/qtl linkage map, its conversion and use within wgaim.

The example consists of phenotypic and genotypic data sets involving a Doubled Hap-
loid (DH) population derived from the interbreeding or crossing of the wheat varieties
RAC875 and Kukri. The main goal of the experiment was to to find causal links between
measured grain yield related traits and genetic markers associated with the population.
The experiment was a subset of a much larger set of trials used for assessing drought
tolerance of the breeding population across a variety of regions (see Bonneau et al., 2012;
Bennett et al., 2012a,b,c).

The phenotypic RAC875 x Kukri data can be accessed using
R> data(phenoRxK, package = "wgaim")

and relates to a field trial consisting of 520 plots. Two replicates of 256 DH lines from the
RAC875 x Kukri population were allocated to plots using a randomized complete block
design with 2 Blocks/Reps. The additional plots remaining in each block were filled with
one of each of the parents and controls (ATIL, SOKOLL, WEEBILL). A number of yield
related trait measurements were taken and grain yield (t/ha) and thousand grain weight
are included with this data.

The collected data frame consists of 520 Rows with 9 columns and an example of the first
ten rows of data are given in Table 4.2. From left to right the “Genotype” column is a
256 level factor consisting of the unique identification of the DH lines, the parents and
the controls. Type is a 4 level factor differentiating the DH lines from the parents and
controls. “Row” and “Range” are 20 and 26 level factors determining the position of the
experimental plot. “Rep” is a 2 level factor identifying the physical block each replicate
of the DH lines was placed in. “yld” and “tgw” are the physical measurements of grain
yield and thousand grain weight taken from each plot upon harvest. The final columns

29

“lIrow” and “lrange” is a centred numerical version of “Row” and “Range” that is used in

18



4 Package Examples

Table 4.1: The first 10 rows of the phenotypic RAC875 x Kukri experiment data
Genotype Type Row Range Rep yld tgw  lrow Irange

DH_R003 DH 1 1 1 2.24 3340 -12.50  -9.50
DH_R055 DH 2 1 1 1.16 31.60 -11.50 -9.50
DH.R056 DH 3 1 1 1.64 4830 -10.50 -9.50
DH_R111 DH 4 1 1 240 31.60 -9.50 -9.50
DH_R112 DH 5 1 1 1.97 3340 -850 -9.50
DH_R170 DH 6 1 1 1.27 26.30 -7.50 -9.50
DH.R172 DH 7 1 1 1.96 27.00 -6.50 -9.50
DH_-R232 DH 8 1 1 2.17 2840 -5.50  -9.50
DH.R234 DH 9 1 1 1.36 3240 -450 -9.50
DH_R294 DH 10 1 1 1.07 2940 -3.50 -9.50

the subsequent analysis.
4.1.1 Base Model

Initially, we begin with Step 1 of the previous chapter by exploring a suitable base model
for yield by considering (2.5) without the random regression effects, Z,M ga, attributed
to genetic markers/intervals, namely

R> rkyld.asi <- asreml(yld ~ Type, random = ~ Genotype + Rep,

+ rcov = ~ arl(Range):arl(Row), data = phenoRxK)

In the model, the Genotype variable is modelled as a set of polygenic random effects
represented as g in (2.5). The Rep is included as a random effect represented by u.
(Smith et al., 2005, see). To ensure genetic differences between parental and progeny
lines is captured the Type variable is modelled as a fixed effect, represented as 7 in (2.5).
The residual error term, e, of 2.5 is also modelled using the rcov argument of the asreml
call. Typically, for a regular field trial of this type, a separable AR1 x ARI1 process
(AR1 = auto-regressive or order 1) is used to parametrically model correlation of the
yield measurements existing due to adjacency of the plots in the field. A summary of the
models variance parameter estimates shows a moderate correlation exists in the Range
direction with a small correlation existing across the Rows.

R> summary (rkyld.asi)$varcomp

gamma  component std.error z.ratio constraint
Genotype!Genotype.var 2.30479883 0.168047406 0.017093543 9.8310459 Positive
Rep!Rep.var 0.02371962 0.001729444 0.003916852 0.4415393 Positive
R!variance 1.00000000 0.072911963 0.007142522 10.2081538 Positive
R!Range.cor 0.24047738 0.240477376 0.068807980 3.4949053 Unconstrained
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Figure 4.1: Row residuals for all Ranges from the initial model for yield in the RAC875 x
Kukri experiment

R!Row.cor 0.50675409 0.506754095 0.048829027 10.3781321 Unconstrained

This initial model needs checking diagnostically. A simple plot() of the model object,
which actually calls upon plot.asreml (), provides four diagnostic plots of the residuals
for visual inspection. Trends across the field can be checked using the in-built ASReml-

R variogram command or a simple trellis panel plot. For example, Figure 4.1 is produced
with the two plotting commands

R> plot(variogram(rkyld.asi))

R> row.ind <- c(1,seq(4, 20, by = 3))

R> xyplot(resid(rkyld.asi) ~ Range | Row, data = phenoRxK, type = "b",
+ panel = function(x, y, ...){

+ panel.abline(h = 0, 1ty = 2)

+ panel.xyplot(x, y, ...)},
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+ aspect = 4/5, layout = c(9,3), ylab = "Residuals",
+ scales = list(x = list(at = row.ind,labels = phenoRxK$Row[row.ind])))

The plots suggests there is a trend across the Rows for each of the Ranges. The variogram
also shows a possible Range effect. Incorporating a linear row (”lrow”) into the fixed
effects and a "Range” random effect the full asreml model is

R> rkyld.asf <- asreml(yld ~ Type + lrow, random = ~ Genotype + Range,

+ rcov = ~ arl(Range):arl(Row), data = phenoRxK)
R> summary (rkyld.asf)$varcomp

gamma  component std.error z.ratio constraint
Genotype!Genotype.var 3.11068122 0.165536298 0.016957534 9.7618141 Positive
Rep!Rep.var 0.06243523 0.003322519 0.005332801 0.6230345 Positive
Range!Range.var 0.29757224 0.015835440 0.006964592 2.2737068 Positive
R!variance 1.00000000 0.053215449 0.005157355 10.3183616 Positive
R!Range.cor 0.16334150 0.163341495 0.074785721 2.1841268 Unconstrained
R!Row.cor 0.26871404 0.268714042 0.072172541 3.7232172 Unconstarined

The summary suggests there is still a correlation in both the Row and Range direction
after a linear de-trending across the Ranges. The addition of the spatial terms in the
model has also reduced the residual variation without affecting the genetic variation.
This has increased the heritability of the trait.

4.1.2 Genetic linkage map

We can now move to Step 2 and read in a genetic marker map for the population. Similar
to the phenotypic data, the RAC875 x Kukri genetic marker data is available using

R> data("genoRxK", package = "wgaim")

If the genotypic data is accessed in this manner the resultant object is a preformatted as an
R/qtl "cross" object. Alternatively to illustrate the use of read.cross() in conjunction
with wgaim the same data is available as a raw CSV file from the extdata directory of
the package A subset of the data from the CSV file is given in Table 4.2. This reveals
that the CSV file is in the rotated CSV format (see read.cross() from the gtl package).
The genotypes are set as AA or BB and missing values are "-". The consecutive missing
values in the preview table are due to the combination of SSR and DaRT markers that
were scored for different genotypes in the population before constructing the map. An
appropriate call to read.cross() is

R> genoRxK <- read.cross("csvr", file="genoRxK.csv", genotypes=c("AA","BB"),

+ dir = wgpath, na.strings = c("-", "NA"))
R> class(raccas)
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Table 4.2: Rotated CSV format of genetic linkage map for the RAC875 x Kukri population

Genotype DH_R001 DH_R002 DH_R003 DH_R004 DH_R005 DH_RO006
ksm0104a 1A 0.00 BB AA AA BB BB BB
wPt-2527 1A 3.93 BB AA AA BB BB BB
wPt-6564 1A 5.65 - - - - - -

cfa2153 1A 588 BB AA AA BB BB BB

wPt-7541 1A 6.79 - - - - - -
wPt-6709 1A 6.79 - - - - - -

gdm0033a 1A 8.05 BB AA AA BB BB BB

wPt-6179 1A 9.08 - - - - - -

wPt-8770 1A 9.08 BB AA AA BB - BB
[1] nbcn "cross"

The returned object inherits the class "bc" (short for ”back-cross”). If required, users can
convert to a "dh" class by directly applying it to the object using the function class().
For the purpose of analysis and discussion in this report the two class types are synony-
mous and so the "bc" class is retained.

It is important to understand the elements of the R/qtl object before proceeding. Looking
at the names of the object at the top level

R> names (genoRxK$geno)

[1] "geno" "pheno"

In an R/qtl object, the "pheno" element is used to store the genotype names as well as
hold other phenotypic information such as measured variables recorded for each genotype.
In wgaim only the genotype names are used from "pheno" to assist in the merging of

genotypic data with the external phenotypic data used to fit the base model described
above.

R> genoRxK$pheno[["Genotype"]][1:18]

[1] DH_ROO1 DH_R002 DH_R003 DH_R004 DH_R005 DH_R006 DH_R007 DH_R008 DH_RO09
[10] DH_RO10 DH_RO11 DH_RO12 DH_RO13 DH_RO14 DH_RO15 DH_RO16 DH_R017 DH_R018

A summary of the linkage map reveals there are 368 individuals genotyped with 500
markers spanning 21 linkage groups. Just over 10% of the marker scores are missing

R> summary (genoRxK)
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Backcross
No. individuals: 368
No. phenotypes: 1

Percent phenotyped: 100

No. chromosomes: 21
Autosomes: 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A

7B 7D

Total markers: 500

No. markers: 44 37 26 22 23 16 24 57 21 22 19 6 12 19 5 21 32 8 47 21
18

Percent genotyped: 89.5

Genotypes (%) : AA:51.1 AB:48.9

Looking inside the "cross" object you will see the following
R> names (genoRxK$geno)

[1] lllAII lllBll IllDll II2A|I ll2BH II2DII II3A|| IISBII ||3Dll II4A|| II4BII ||4DII "5AI| II5BII ||5DII
[16] I|6All II6BII ||6DII II7AI| II7BII ||7DII

The genetic marker information is a named list format with the appropriate name for
each linkage group. Looking deeper into the genetic object we see

R> names (genoRxK$geno$"3D")

[1] "data" nmapu

For each linkage group, "data" contains the actual marker data matrix, converted into
R/qtl format (AA = 1, BB = 2, missing values = NA). Marker names are placed as
the column names. The rows of the data are in order of the genotype names found in
genoRxK$pheno [["Genotype"]].

R> genoRxK$geno$"3D"$data[200:208,1:8]

wPt-2464 c£d0079 cfd0064 cfd0034 wmc0533 wPt-6262 wPt-7894 barc0042

[1,] 2 2 1 1 1 NA NA 1
[2,] 1 1 1 1 1 1 1 1
(3,1 1 1 1 1 1 1 NA 1
(4,] 1 1 1 1 1 2 2 2
(5,1 2 2 1 1 1 1 1 1
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[6,] 2 2 2 2 2 1 1 1
[7,] 2 1 1 1 1 NA NA 1
(8,1 2 2 2 2 2 2 2 2
[9,1] 1 1 2 2 1 NA NA 1

The "map" element contains the map distances that may be either estimated using the
Lander-Green hidden Markov algorithm (Lander & Green, 1987), or in this case, read in
during the read.cross() process.

R> genoRxK$geno$"3D"$map

wPt-2464 c£d0079 c£d0064 c£d0034 wmc05633  wPt-6262  wPt-7894
0.000000 7.070636 53.420205 61.537557 70.659111 87.517197 94.406998
barc0042 gwm0664  gwm0383b  gwm0314b  cf£d0223b  barc0071 gwmOl14a
108.448240 112.265676 116.367546 126.091701 134.965640 179.005013 181.480204
wPt-5506 gwm0858  wPt-7241  wPt-2923 wPt-3412 barc0284 wPt-0485
181.480205 181.840812 182.607135 182.607135 182.607136 183.997849 186.021461

The first marker of the linkage group is always set to zero.

Following Step 3 we now convert the "cross" object to an "interval" object. In doing
so missing marker scores are imputed using the rules of Martinez & Curnow (1992) and
consensus markers are created for co-located marker sets using the rules described in Table
3.1.

R> genoRxK <- cross2int(genoRxK, missgeno = "Mart", id = "Genotype",
+ rem.mark = TRUE)
R> class(genoRxK)

[1] "be" "cross" ‘"interval"

For this linkage map, a series of warning messages are outputted to the screen (omitted
here) due to several lines containing a complete set of missing values for a linkage group.
The missing values are replaced with zeros to ensure a complete linkage map (i.e. no
missing values) is constructed. The classes of genoRxK and their ordering is retained and

it now also inherits the class "interval" for use with functions in wgaim.

For a specific linkage group in the "interval" object, there are now additional compo-
nents

R> names (genoRxK$geno$"3D")
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[1] "datall "mapll
[6] "intval"

n dl St n

"theta"

"imputed.data"

Thus for each linkage group, "data" and "map" are as before with the exception they now

contain reduced sets of markers from omitting co-located markers. Markers proceeded by

a7 (C)” are now consensus markers

R> genoRxK$geno$"3D"$map

wPt-2464 c£d0079
0.000000 7.070536
wPt-7894 barc0042
94.406998 108.448240
barc0071 gwm0114a(C)
179.005013 181.480204

cfd0064 cfd0034
53.420205 61.537557 7

gwm0664 gwm0383b
112.265676 116.367546 12

gwm0858 wPt-7241(C)

181.840812

182.607135 18

wmc0533
0.659111
gwm0314b
6.091701 1
barc0284
3.997849 1

wPt-6262
87.517197
c£d0223b
34.965640
wPt-0485
86.021461

The additional components, "dist" contain the interval distances and "theta" are the

recombination fractions between adjacent markers based on "dist".

contains the marker data with all missing values imputed

R> genoRxK$geno$"3D"$imputed.data[200:208,1:8]

wPt-2464 c£d0079 c£d0064 c£d0034 wmc0533

DH_R200 -1 -1
DH_R201
DH_R202
DH_R203
DH_R204 -1 -1
DH_R205 -1 -1
DH_R206 -1 1
DH_R207 -1 -1
DH_R208 1 1

1

N

1

N

1
1
1
1
1

1

-1 1.
1 0.

-1 -1

1 0.

0.9333879
1.0000000
1.0000000 O.
0000000 -1.
1.0000000
1.0000000

-1.

wPt-6262

= O

.0000000
0000000

9333879 0.
.0000000 -1.
9333879 0.

"imputed.data"

wPt-7894 barc0042

.9370112
.0000000
9809907
0000000

9370112
0000000
9370112

1
1
1
-1

and "intval" contains the interval data based on the mid-point pseudo-interval calcula-
tion of Verbyla et al. (2007) and defined as M g in section 2.1.

R> genoRxK$geno$"3D"$intval [200:208,1:6]

c£d0079 cf£d0064
DH_R200 -0.9983369 0.0000000 O
DH_R201 0.9983369 0.9340516 O
DH_R202 0.9983369 0.9340516 O
DH_R203 0.9983369 0.9340516 O
DH_R204 -0.9983369 0.0000000 O

c£d0034

.9978094
.9978094
.9978094
.9978094
.9978094
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wmc0533

.9972358
.9972358
.9972358
.9972358
.9972358

wPt-6262
0.9576392
0.9906333
0.9906333
0.0000000
0.9906333

wPt-7894
0.9337226
0.9984207
0.9889310
-0.9984207
0.9984207
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DH_R205 -0.9983369 -0.9340516 -0.9978094 -0.9972358 0.0000000 0.9984207
DH_R206 0.0000000 0.9340516 0.9978094 0.9972358 0.9576392 0.9337226
DH_R207 -0.9983369 -0.9340516 -0.9978094 -0.9972358 -0.9906333 -0.9984207
DH_R208 0.9983369 0.0000000 -0.9978094 0.0000000 0.9576392 0.9337226

4.1.3 QTL analysis and summary

We have now have all the appropriate components of data to perform our wgaim QTL
analysis in Step 4. For this analysis we will use the calculated genetic intervals or
"intval" components of each linkage group and perform a fixed effects analysis, selecting
QTL using interval statistics only. It is worthwhile understanding how wgaim.asreml ()
operates by breaking out of the forward selection algorithm after the first random effects
interval model fit using the breakout argument

R> rkyld.qtl0 <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK,

+ merge.by = "Genotype", trace = TRUE, na.method.X = "include",
+ gen.type = "interval", method = "fixed", selection = "interval",
+ breakout = 1, exclusion.window = 0)

In the initial hidden parts of this computation the phenotypic and genotypic interval
data components are merged using the merge . by argument. For high dimensional genetic
data a transformation is performed using section 2.3.2 and the details of Verbyla et al.
(2012). This first model fit is then equivalent to (2.5) where all the intervals are included
simultaneously into the linear mixed model with the extra term Z,M gpa. The BLUPs
of the interval QTL effects are then recovered and the outlier statistics are formed to
choose the first QTL. Both of these are returned with the object and can be found under
rkyld.qt11$QTL$diag. Figure 4.2 shows the scaled random interval QTL effects and the
interval outlier statistics from the model from using the out.stat () function

R> out.stat (rkyld.qtll, genoRxK, iter = 1, stat= "blups")
R> out.stat (rkyld.qtll, genoRxK, iter = 1, stat= "os")

The plots highlight the linkage groups with separate colours and show the causal rela-
tionships the intervals have with yield. The first QTL, on chromosome 3B, that will be
selected is also highlighted. A summary of the variance parameters of the model at this
stage can be found using

R> asreml:::summary.asreml (rkyld.qtll)$varcomp

gamma  component std.error z.ratio constraint
ints!grp("ints") .var 49.45607404 2.642258814 0.624502193 4.2309840 Positive
Genotype!Genotype.var 1.06306579 0.056795753 0.009362024 6.0666101 Positive
Rep!Rep.var 0.05987626 0.003198972 0.005172746 0.6184281 Positive
Range!Range.var 0.29750605 0.015894670 0.006964489 2.2822450 Positive
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Figure 4.2: Scaled BLUPs of the interval QTL effects (TOP) and interval outlier statistics
across the complete linkage map after the first model fit (BOTTOM).

Rl!variance 1.00000000 0.053426376 0.005133952 10.4064809 Positive
R!'Range.cor 0.15120605 0.151206051 0.068950181 2.1929754 Unconstrained
R!'Row.cor 0.29683957 0.296839574 0.066471843 4.4656438 Unconstrained

Comparing this to the variance parameter summary for rkyld.asf in section 4.1.1 an
approximate percentage variance accounted for by the markers can be calculated as
100*(0.16553 - 0.0568)/0.16533 = 65.6%. This shortfall is not unusual for traits such
as yield as they are known to be genetically complex.

Returning to the analysis the breakout argument is omitted from the wgaim.asreml ()
call (setting it back to default of -1) and the algorithm therefore continues until it halts.

R> rkyld.qtll <- wgaim(rkyld.asf, phenoData = phenoRxK, intervalObj = genoRxK,

+ merge.by = "Genotype", trace = TRUE, na.method.X = "include",
+ gen.type = "interval", method = "fixed", selection = "interval",
+ exclusion.window = 0)

By default, the tracing argument is trace = TRUE which produces an annotated version
of the asreml models fitted throughout the forward selection algorithm. This output has
been omitted for brevity. After the analysis is complete the QTL can be diagnostically
checked and summarised using any of the method functions available in Step 5. In
this example the summary of the resulting QTL is found using the method function
summary.wgaim(), namely
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R> summary(rkyld.qtll, genoRxK, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM)  Size Pvalue % Var

1 1D wPt-1799 128.29 wPt-1263 166.85 -0.093 0.000 1.7
2 2A wmc0296 84.77 wPt-7306 86.58 -0.205 0.003 8.4
3 2A barc0220(C) 87.47 cfa2263 87.76 0.267 0.000 14.2
4 2B wPt-9644 25.24 wPt-5672 29.97 -0.098 0.000 .9
5 2B wPt-3378 135.93 wPt-7360 136.11 -0.075 0.000 .1
6 3B wPt-7984 6.65 barc0075 7 0.073 0.000 .0
7 3B wmc0043 68.14 wPt-6973(C) 79.41 0.095 0.000 .8
8 3B wPt-8021 244.67 gwmO114b  256.42 -0.355 0.000 25.1
9 3B gwmO114b  256.42 wPt-8845 265.8 0.181 0.000 6.5
10 3D cf£d0064 53.42 c£d0034 61.54 0.105 0.000 2.2
11 4D gwm0297b 0 wmc0457 6.56 -0.195 0.006 7.6
12 4D wmc0457 6.56 barc0288 7.32 0.293 0.000 17.2
13 7B wPt-9925 93.88 wPt-5343 108.17 -0.063 0.003 0.8

The output for each QTL is summarised with the linkage group, the name and location of
the flanking markers on the linkage group and the size of the QTL effect. The significance
of the QTL effects are determined using the formula of section 2.4.1 and the percentage
contribution to the overall genetic variance is calculated using section 2.4.3. Although
Verbyla et al. (2007) recommends the use of p-values as the overall test of significance for
each of the QTL, the argument LOD = TRUE can be given to summary.wgaim() if LOD
scores are necessary. The analysis reveals 13 significant QTL across seven linkage groups.
The summary also shows linkage groups 2A, 3B and 4D appear to have linked QTL in
repulsion. Keen observers will realise the overall genetic contribution of the QTL is 89.5%
which exceeds the original estimate of 65.6%. As section 3 indicates, this is most likely
due to biased estimation of the individual genetic contributions of the tightly linked QTL.
This phenomenon will be explored further in the next example.

4.2 Sunco x Tasman data

This example stresses the importance of modelling extraneous variation to a ensure a more
appropriate QTL analysis. It is also used to highlight the diagnostic and visual features
of wgaim. The Sunco x Tasman data sets consist of phenotypic milling trial data as well
as a genetic linkage map involving a doubled haploid population formed from the crossing
of wheat varieties Sunco x Tasman. The aim of the experiment was to determine genetic
markers that may be linked to milling yield.

The phenotypic data can be accessed using

R> data(phenoSxT, package = "wgaim")
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The data relates to a two phase experiment involving 175 DH lines of Sunco x Tasman,
2 parents and 6 commercial lines. The first phase of the experiment was a field trial
conducted in the year 2000 consisting of 31 rows and 12 columns. DH lines were then
allocated to plots in this spatial array using a randomized complete block design with
2 Blocks. Additional plots were filled with the parents and commercial lines. A second
phase milling experiment was then carried out where 23% of the field plots were replicated
to produce a total of 456 milling samples. These partially replicated field samples were
then randomly allocated to 38 mill days with 12 milling samples per day. The focus is on
the trait milling yield.

The data frame consists of 456 rows with 12 columns
R> names (phenoSxT)

[1] "EXPt n ||Type|| llidll ||Range n llROW" llRepll ||Mi11day||
[8] "Millord" "myield" "lord" "lrow"

In this example “Type” is a 9 level factor distinguishing the DH, parents and commercial
lines. The “id” columns is a 183 level factor containing a unique identification of the
175 DH line and 8 other wheat varieties. The original field Row and Range (Column)
have been kept and are numeric factors of 31 and 12 levels respectively. “Rep” represents
the two level Blocking structure from the field. Similarly, “Millday” and “Millord” are
numeric factors of 38 and 12 levels respectively arising from the milling design. “myield”
is a quantitative variable capturing the milling yield of each of the samples. The final two
variables are centred quantitative equivalents of the factors Row and Millord.

4.2.1 Base model

It is important to understand the hierarchical structure of data arising from a two phase
experiment prior to statistical modelling. Smith et al. (2006) provides and excellent initial
reference and in particular the ANOVA table of a hypothetical milling experiment in Table
5 of this article shows terms appropriate for inclusion in an initial model. Using this table
as a guide an appropriate initial model would be

R> st.fmI <- asreml(myield ~ Type, random = ~ id + Rep + Range:Row +
+ Millday, rcov = ~ Millday:arl(Millord), data = phenoSxT)

Due to the natural hierarchy existing in the data, diagnostically, there are several com-
ponents of this model that need checking. The (milling) residuals of the model can be
checked with
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Figure 4.3: Milling residuals from initial model of Sunco x Tasman milling experiment

R> xyplot(resid(st.fmI) ~ as.numeric(Millord) | Millday, data =
+ phenoSxT, type = "b")

and are given in Figure 4.3. The plot suggest there may be a slight downward trend
in milling yield across the order of milling samples each day. In a similar manner the
field residuals can also be plotted by extracting the random effect coefficients from the
"Range:Row" term of the model.

R> field.resid <- coef(st.fmI, pattern = "Range:Row")

R> rrd <- data.frame(field.resid = field.resid,

+ Range = factor(rep(1:12, each = 31)), Row = factor(rep(1:31,12)))

R> xyplot(field.resid ~ Row | Range, data = rrd, type = "b", layout = c(6,2))

Figure 4.4 shows the field residuals across Rows for given Ranges and indicates there is
slight donward trend in milling yield across the Rows of the field.

To compensate for these trends a linear row (”Irow”) and linear order ("lord”) terms are
fitted as fixed effects in the asreml model. Thus the full base asreml model is of the form

R> st.fmF <- asreml(myield ~ Type + lord + lrow, random = ~ id + Rep +
+ Range:Row + Millday, rcov = ~ Millday:aril(Millord), data = phenoSxT)
R> summary (st.fmF)$varcomp

gamma component std.error z.ratio constraint
id 7.0925458 1.92573995 0.23965934 8.0353220 Positive
Rep 0.2843737 0.07721201 0.15604795 0.4947967 Positive
Range :Row 1.4973306 0.40654927 0.06206771 6.5500926 Positive
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Figure 4.4: Field residuals from initial model of Sunco x Tasman milling experiment

Millday 1.7795039 0.48316385 0.15646257 3.0880476 Positive
Rl!variance 1.0000000 0.27151604 0.08035809 3.3788264 Positive
R!Millord.cor 0.7109431 0.71094307 0.12682697 5.6056142 Unconstrained

The summary reveals a large genetic variance component. For comparison a NULL model
(no extraneous effects) is also fitted.

R> st.fmN <- asreml(myield ~ 1, random = ~ id, data = phenoSxT,
+ na.method.X = "include")

4.2.2 Linkage map

The genetic linkage map for the Sunco x Tasman population can be loaded using either
of the first two following commands

R> genoSxT <- data(genoSxT, package = "wgaim")

R> genoSxT <- read.cross("csv", file="genoSxT.csv", genotypes=c("AA","BB"),
+ dir = wgpath, na.strings = c("-", "NA"))

R> nmar (genoSxT)

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D
9 16 15 13 12 22 12 16 13 19 13 8 18 17 8 5 16 6 31 13 5

The map consists of 190 individuals that have been genotyped with 287 markers. After
some exploration of the linkage map there appears to be some individuals that have less
than half of their markers scored. The individuals do not feature in the phenotypic data
set and therefore can be safely discarded.

R> nt <- ntyped(genoSxT, "ind")
R> nt[nt < 120]
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186 187 188 189 190 191 192 194 195 196
75 73 72 64 71 T4 67 112 110 108

R> genoSxT <- subset(genoSxT, ind = 1:180)
R> genoSxT <- cross2int(genoSxT, missgeno="Mart", id = "id" rem.mark = FALSE)

After omitting the non-essential lines the linkage map is converted from a "cross" object
to an "interval" object. The original map did not contain co-located markers

It is possible to view the genetic map using link.map() in various ways. The function
allows sub-setting according to distance (¢cM) and/or chromosome. Figure 4.5 shows two
maps with the top one representing the all 21 linkage groups with no subsetting. The
bottom map is subsetted by using the "chr.dist" argument which takes either or both
start and end elements. These elements can have a single distance (¢cM) or a vector of
distances matching the number of chromosomes from "chr".

R> link.map(genoSxT, chr = names (nmar(genoSxT)), m.cex = 0.5)
R> link.map(genoSxT, names (nmar (genoSxT)[1:20]), m.cex = 0.5,
+ chr.dist = list(start = 25, end = 180), marker.names = "dist")

For larger maps a more aesthetic plot is reached by adjusting the marker character ex-
pansion (m.cex) parameter and increasing the plotting window width manually.

4.2.3 QTL analysis and diagnostics

A QTL analysis is now performed for the full model st.fmF and the null model st.fmN.
This time we pipe the non-essential output to a text file using a file name for the argument
trace. After doing this, only individual QTL found are annotated to the screen (omitted

here).

R> st.qtlN <- wgaim(st.fmN, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "interval", method = "fixed",
+ selection = "interval", trace = "nullmodel.txt",
+ exclusion.window = 0)

R> st.qtlF <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "interval", method = "fixed",
+ selection = "interval", trace = "fullmodel.txt",
+ exclusion.window = 0)

In a similar fashion to the last example, the process of selecting QTL is determined from
the outlier statistics. These are saved, along with the BLUP interval effects, for each
iteration and can be viewed using the out.stat () command. For the first two iterations
of the process the BLUP interval effects and interval outliers statistics are given in Figure
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4.6 are produced with

0.6, stat = "os")
0.6, stat = "blups")

R> out.stat(st.qtlF, genoSxT, int
R> out.stat(st.qtlF, genoSxT, int

TRUE, iter
TRUE, iter

1:2, cex

1:2, cex

The plots show the causal links between the interval QTL and milling yield. For larger or
denser linkage maps there is also an additional argument that allows the user to subset the
map to specific chromosomes which is only available when int = TRUE. (Figure omitted).
For this example, the plots highlight the large QTL existing on 2B and 6B and also show
the wide QTL existing on 1B.

R> out.stat(st.qtlF, genoSxT, int = TRUE, iter = 1:5, cex = 0.6,
+ Chr = C("2B" II4B" 716BH "'7DII))

From a statistical standpoint the QTL selected across the genome cannot be expected to
be orthogonal. Thus the introduction of the next QTL in the forward selection process
will inevitably affect the significance of the previously selected QTL. A post diagnostic
evaluation of the QTL p-values in the forward selection process can be displayed using

R> tr(st.qtlF, iter = 1:10, digits = 3)

Incremental QTL P-value Matrix.

2B.5 6B.5 7D.2 4B.1 1B.13 4D.1 b5A.13 2A.7 3D.5 1B.4

Iter.1 <0.001

Iter.2 <0.001 <0.001

Iter.3 <0.001 <0.001 <0.001

Iter.4 <0.001 <0.001 <0.001 <0.001

Iter.5 <0.001 <0.001 <0.001 <0.001 0.001

Iter.6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.7 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Iter.8 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006
Iter.9 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.012

Iter.10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 0.009 0.013

Likelihood Ratio Test of QTL Variance Component.

LO L1 Statistic Pvalue
Iter.1 -309.563 -251.036 117.054 <0.001
Iter.2 -279.819 -243.841 71.955 <0.001
Iter.3 -269.714 -239.729 59.97 <0.001
Iter.4 -262.115 -236.919 50.392 <0.001
Iter.5 -247.277 -233.758 27.038 <0.001
Iter.6 -241.707 -230.061 23.293 <0.001
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Iter.7 -236.851 -226.46 20.782 <0.001

Iter.8 -226.72 -222.799 7.842 0.003
Iter.9 -223.931 -221.89 4.081 0.022
Iter.10 -223.504 -221.524 3.96 0.023
Iter.11 -223.045 -221.349 3.391 0.033
Iter.12 -223.089 -221.038 4.102 0.021
Iter.13 -223.033 -221.352 3.363 0.033
Iter.14 -223.089 -221.659 2.86 0.045
Iter.15 -222.718 -221.791 1.854 0.087

The first of these displays shows the p-values of the selected QTL for the first ten iterations
occurring in the WGAIM process. An example of the dynamic changes in significance can
be seen for the selected QTL interval 2A.7. The second display presents the likelihood
ratio tests, —2log A, for the significance of the QTL variance parameter, 7,, in (2.5), with
the inclusion of the last hypothesis test where the null model is retained. Both of these
diagnostics are useful in determining the strength of the putative QTL entering the fixed
model and the effects it has on QTL already selected.

4.2.4 \Visualising your QTL results

Similar to the previous example, full summaries are available through the summary.wgaim()
command. From an interval analysis complete information on each QTL is provided in-
cluding names and distances of the flanking markers as well size, signficance and the
contribution of the QTL to the overall genetic variance.

R> summary(st.qtlF, gneoSxT, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM)  Size Pvalue % Var

1 1B Glu.B3 11.02 P34.M51.286 13.71 0.196 0.003 1.4
2 1B gwmll 90.88 gwm140 239.51 -0.812 0.000 23.4
3 2A wmc198 29.67 wmcl70 40.92 -0.225 0.002 1.8
4 2B wmc474USQ 54.76 wmc35a 59.59 0.840 0.000 25.1
5 3D  TeloPAGG2 54.99 TeloPAGG1 61.22 -0.215 0.002 1.6
6 4A germin 10.32 cdo795 11.39 0.153 0.021 0.8
7 4B barc193 0 csME1 11.98 -0.445 0.000 7.0
8 4D Rht2.mut 0 csME2 1.84 0.309 0.000 3.4
9 5A wmc159 63.07 gwm617b 69.53 -0.181 0.025 1.2
10 5A  PAACTelo2 95.11 P46 .M37.4 102.08 -0.273 0.001 2.6
11 5D cfds1 40.14 cdob57a 50.35 -0.145 0.029 0.7
12 6B cdo507 8.92 barc354 9.45 -0.644 0.000 14.7
13 6B barc24 21.58 barcl78 25.68 0.252 0.009 2.3
14 7D gwm437 86.55 wmc94 93.99 0.305 0.000 3.3
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The summary shows some large milling yield QTL have been found on several chromo-
somes. Of particular note is the large QTL on 6B in a very small interval of 0.5cM. In
contrast, a large QTL was found on chromosome 1B in a 100+cM interval. There are also
tightly linked QTL found on 6B. These QTL wll be explored in more detail in section
4.2.6. The summary produces a data.frame of results that can be easily exported to
a spreadsheet program if desired. For multiple tables a simple table binding function
is provided which stacks the QTL tables making it instantly useful for exporting with
programs such as the the LaTeX table package xtable. (table omitted here.)

R> qtlTable(st.qtlF, st.qtlN, intervalObj = genoSxT, labels = c("Full",
+ "Null"), columns = 1:8)

The full and the NULL QTL models can be summarised visually using link.map(). In
this case it calls the method link.map.wgaim() to plot the QTL on the genetic map.

R> link.map(st.qtlF, genoSxT, marker.names = "dist", cex = 0.6,
+ trait.labels = "Full")

Multiple models or traits can be handled through link.map.default(). For example,
Figure 4.7 is produced with

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",
+ trait.labels = c("Full", "Null"))

The multiple QTL map reveals that an extra six QTL were detected in the full model
compared to the null model, highlighting the importance of modelling extraneous variation
appropriately in QTL analyses.

The QTL plotting procedures 1ink.map.wgaim() and link.map.default() are highly
customisable. Through an argument list.col it allows the user to specify the QTL
colour between markers, the colour of the flanking QTL marker names, the colour of the
trait names and the rest of the marker names. If no colours are chosen q.col and t.col
defaults to rainbow(n) where n is the number of traits. You can also change the size of
the marker and trait name text with the argument 1ist.cex.

Some customized examples are given below for the Full and Null QTL models for the
Sunco x Tasman data and can be seen in Figure 4.8. These have been produced using
the following criteria; change the colour of the QTL regions and the names and setting
the background marker text grey.

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col = c("skyblue3",
+ "salmon2"), m.col = "red", t.col = c("skyblue3", "salmon2")), col = "gray")
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A monochromatic plot with increased sizes for the trait labels.

R> link.map.default(list(st.qtlF, st.qtlN), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col =
+ rep(gray(0.8), 2), m.col = "black", t.col = "black"),
+ list.cex = list(t.cex = 0.8), col = "gray")

4.2.5 Marker analysis

The summary of the interval QTL analysis for the full model shows a putative QTL in a
very large interval on 1B. It may then be of interest to perform a marker analysis to see
if this QTL is more closely linked to either of the flanking markers. This can be done by
simply changing the gen.type argument in the call

R> st.qtlFM <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,
+ merge.by = "id", gen.type = "marker", method = "fixed",
+ selection = "interval", trace = "fullmodel.txt", exclsuion.window = 0)

The wgaim model can be summarised in the usual way.

R> summary(st.qtlFM, genoSxT, LOD = TRUE)

Chromosome Marker dist(cM) Size Pvalue % Var LOD
1 1B P34.M51.286 13.71 0.203 0.002 1.1 2.135
2 1B cdo473 85.79 -0.304 0.000 2.4 4.414
3 1B ksul27a 247.32 -0.230 0.000 1.4 3.097
4 2A wmc198 29.67 -0.180 0.008 0.8 1.504
5 2B wmc474USQ 54.76 0.774 0.000 15.6 26.492
6 3D TeloPAGG2 54.99 -0.190 0.004 0.9 1.785
7 4A germin 10.32 0.176 0.007 0.8 1.584
8 4B csME1 11.98 -0.411 0.000 4.4 T7.274
9 4D Rht2.mut 0 0.287 0.000 2.1 4.652
10 5A P46 .M37 .4 102.08 -0.334 0.000 2.9 5.435
11 6B barc354 9.45 -1.244 0.000 40.4 4.472
12 6B gwm361 10.51 0.810 0.003 17.1 1.897
13 7D wmc94 93.99 0.289 0.000 2.2 4.672

For marker QTL analysis the summary output is identical to the output of the interval
QTL analysis with the exception that only the closest linked marker name and location
is given for each QTL. The summary shows the large QTL found on 1B in the interval
analysis has been reduced to two small QTL linked to the flanking markers. This indicates
there is most likely large QTL existing in the wide interval. The summary also shows a
large QTL on 2B in exactly the same region as the QTL found using interval analysis.
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The marker analysis also found 2 QTL on 6B in close proximity that soak up a sizeable
portion of the genetic variation.

The outlier statistics for this analysis are at the marker positions and can also be plotted
using out.stat. The marker outlier statistics for the first first five iterations can be seen
in Figure 4.9

R> out.stat(st.qtlFM, genoSxT, int = TRUE, iter = 1:5, cex = 0.6)
Fitting the Null model in a similar manner.
R> st.qtlNM <- wgaim(st.fmN, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.by = "id", gen.type = "marker", method = "fixed",
+ selection = "interval'", trace = "nullmodel.txt", exclusion.window = 0)

Similar to the interval analysis, the results from the Full model and the Null model can
be plotted on the linkage map and is given in Figure 4.10. The QTL are now highlighted

with plotting symbols that can be altered with the usual arguments, pch and cex.

R> link.map.default(list(st.qtlFM, st.qtINM), genoSxT, marker.names = "dist",

+ trait.labels = c("Full", "Null"), list.col = list(q.col = c("red",
+ "light blue"), m.col = "red", t.col = c("red", "light blue")),

+ list.cex = list(t.cex = 0.9, m.cex = 0.7), col = "black",

+ cex = 2, pch = 16)

Again, the plot reveals that the Null model discovered less QTL than the Full model.
4.2.6 Exclusion window

Both the interval analysis and the marker analysis of the full model indicate there were
two tightly linked QTL in repulsion selected on chromosome 6B. Checking the scaled
BLUPs from the interval analysis the reason for the selections are revealed.

R> out.stat(st.qtlF, genoSxT, iter = c(2,3,11), cex = 0.6,
+ chr = c("6B","7D"), stat = "blups")

After the selection of the first QTL on 6B in iteration 2 and its subsequent fixed effects
estimation, the BLUPs in the proximity of the chosen QTL appear to change sign from
negative to positive. This is not unusual and indicates that the first QTL was hiding
another tightly linked QTL of opposite effect. This QTL is eventually chosen in iteration
11 of the algorithm. Unfortunately very tightly linked QTL have minimal recombination
between them, indicating that the selection of the second QTL is heavily based on the
phenotypic information stemming from the small number of lines that have recombined
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scaled BLUPs

Figure 4.11: Scaled BLUPs of the interval QTL effects for iterations 2, 3 and 11 for the QTL
analysis involving the full model.

between the QTL. Consequently, the dubiousness in selecting the second QTL increases as
the QTL are more tightly linked. This can be alleviated by choosing an exclusion window
around the region of the first selected QTL. In the next analysis an exclusion window of

Iteration: 11
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20cM is added and the method = "random" formulation will be used

R> st.qtlFR <- wgaim(st.fmF, phenoData = phenoSxT, intervalObj = genoSxT,

+ merge.b,

+ selection = "interval",

= "id", gen.type = "interval", method = "random",

Its summary is then

trace = "fullmodel.txt", exclusion.window

R> summary(st.qtlFR, genoSxT, LOD = FALSE)

Chromosome Left Marker dist(cM) Right Marker dist(cM)

1B
1B
2A
2B
3D
4A
4B
4D

0 N O O W N -

Glu.B3
gwmll
wmc198
wmc474USQ
TeloPAGG2
germin
barc193
Rht2.mut

11.
90.
29.
54.
54.
10.

02 P34.M51.286

88 gwm140
67 wmcl70
76 wmc3ba
99 TeloPAGG1
32 cdo795
0 csME1
0 csME2

44

13.
239.
40.
59.
61.
11.
11.
1.

71
51
92
59
22
39
98
84

Size

.159
.743
.182
.809
.158
.138
.436
.285

Prob % Var
.003
.000
.003
.000
.005
.008
.000
.000

O O O O O O o O

1.
5.
1.
34.

O > N> 010 00 O

» O - -
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9 5A  PAACTelo2 95.11 P46.M37.4 102.08 -0.323 0.000 5.4
10 6B cdo507 8.92 barc354 9.45 -0.444 0.000 11.0
11 7D gwm437 86.55 wmc94 93.99 0.285 0.000 4.3

The random QTL interval analysis summary output is identical to the fixed QTL interval
summary output with the exception of the significance of the QTL. From section 2.4.2 the
significance or strength of QTL are now determined by a probability statement. Values
displayed here then measure the probability that a QTL is actually zero and allow an
interpretation similar to a p-value. In comparison to the interval QTL analysis, this
summary indicates only one QTL was selected on chromosome 6B and three less QTL
were found in total. However, all QTL found from the interval random effects analysis
were shared with the interval fixed effects analysis.
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