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1 Introduction

The Toolkit for Weighting and Analysis of Nonequivalent Groups, twang, contains a set of
functions and procedures to support causal modeling of observational data through the estimation
and evaluation of propensity scores and associated weights. This package was developed in 2004.
After extensive use, it received a major update in 2012.

The propensity score is the probability that a particular case would be assigned or exposed to
a treatment condition. Rosenbaum & Rubin (1983) showed that knowing the propensity score is
sufficient to separate the effect of a treatment on an outcome from observed confounding factors
that influence both treatment assignment and outcomes, provided the necessary conditions hold.
The propensity score has the balancing property that given the propensity score the distribution
of features for the treatment cases is the same as that for the control cases. While the treat-
ment selection probabilities are generally not known, good estimates of them can be effective
at diminishing or eliminating confounds between pretreatment group differences and treatment
outcomes in the estimation of treatment effects.

There are now numerous propensity scoring methods in the literature. They differ in how
they estimate the propensity score (e.g. logistic regression, CART), the target estimand (e.g.
treatment effect on the treated, population treatment effect), and how they utilize the resulting
estimated propensity scores (e.g. stratification, matching, weighting, doubly robust estimators).
We originally developed the twang package with a particular process in mind, generalized boosted
regression, to estimate the propensity scores and weighting of the comparison cases to estimate
a treatment effect on the treated. However, we have updated the package to also meaningfully
handle the case where interest lies in using the population weights (e.g., weighting of comparison
and treatment cases to estimate the population average treatment effect.) The main workhorse of
twang is the ps() function which implements generalized boosted regression modeling to estimate
the propensity scores. However, the framework of the package is flexible enough to allow the
user to use propensity score estimates from other methods and to assess the usefulness of those
estimates for ensuring equivalence (or “balance”) in the pretreatment covariate distributions of
treatment and control groups using tools from the package. The same set of functions is also
useful for other tasks such as non-response weighting, as discussed in Section 4.

The twang package aims to compute from the data estimates of the propensity scores which
yield accurate causal effect estimates, check the quality of the weights by assessing whether or

∗The twang package and this tutorial were developed under NIDA grants R01 DA017507 and R01 DA015697-03
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not they have the balancing properties that we expect in theory, and use them in computing
treatment effect estimates.

2 An ATT example to start

If you have not already done so, install twang by typing install.packages("twang"). twang

relies on other R packages, especially gbm, survey, and lattice. You may have to run in-

stall.packages() for these as well if they are not already installed. You will only need to do
this step once. In the future running update.packages() regularly will ensure that you have
the latest versions of the packages, including bug fixes and new features.

To start using twang, first load the package. You will have to do this step once for each R
session that you run. We also set the seed of R’s pseudo random number generator so that the
results are exactly replicable. (There is a stochastic element to the fitting of the propensity score
models.)

> library(twang)

Loaded gbm 1.6-3.1

> set.seed(1)

To demonstrate the package we utilize data from Lalonde’s National Supported Work Demon-
stration analysis (Lalonde 1986, Dehejia & Wahba 1999, http://www.columbia.edu/~rd247/
nswdata.html). This dataset is provided with the twang package.

> data(lalonde)

R can read data from many other sources. The manual “R Data Import/Export,” available
at http://cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.

For the lalonde dataset, the variable treat is the 0/1 treatment indicator, 1 indicates“treat-
ment”by being part of the National Supported Work Demonstration and 0 indicates“comparison”
cases drawn from the Current Population Survey. In order to estimate a treatment effect for this
demonstration program that is unbiased by pretreatment group differences on other observed
covariates, we include these covariates in a propensity score model of treatment assignment:
age, education, black, Hispanic, having no degree, married, earnings in 1974 (pretreatment), and
earnings in 1975 (pretreatment). Note that we specify no outcome variables at this time. The
ps() function is the primary method in twang for estimating propensity scores. This step is
computationally intensive and can take a few minutes.

> ps.lalonde <- ps(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data = lalonde,

+ n.trees=5000,

+ interaction.depth=2,

+ shrinkage=0.01,

+ perm.test.iters=0,

+ stop.method=c("es.mean","ks.max"),

+ estimand = "ATT",

+ verbose=FALSE)
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The arguments to ps() require some discussion. The first argument specifies a formula
indicating that treat is the 0/1 treatment indicator and that the propensity score model should
predict treat from the eight covariates listed there separated by “+”. The “+” does not mean
that these variables are being summed nor does it mean that the model is linear. This is
just R’s notation for including predictor variables in the model. There is no need to specify
interaction terms in the formula. There is also no need — and it can be counterproductive — to
create indicator, or “dummy coded,” variables to represent categorical covariates, provided the
categorical variables are stored as a factor or as ordered (see help(factor) for more details).

The next argument, data, indicates the dataset. n.trees, interaction.depth, and shrink-

age are parameters for the gbm model that ps() computes and stores. The resulting gbm object
describes a family of candidate propensity score models indexed by the number of GBM itera-
tions from one to n.trees. The argument n.trees is the maximum number of iterations that
gbm will run. ps() will issue a warning if the estimated optimal number of iterations is too close
to the bound selected in this argument because it indicates that balance may improve if more
complex models (i.e., those with more trees) are considered. The user should increase n.trees

or decrease shrinkage if this warning appears.
perm.test.iters specifies whether p-values for KS statistics should be calculated using

Monte Carlo methods, which is slow but can be accurate, or estimated using an analytic
approximation that is fast, but produces poor estimates in the presence of many ties. If
perm.test.iters=0 is called, then analytic approximations are used. If perm.test.iters=500
is called, then 500 Monte Carlo trials are run to establish the reference distribution of KS statis-
tics for each covariate. Higher numbers of trials will produce more precise p-values.

The estimand argument is used to indicate whether the analyst is interested in estimating
the average treatment effect (ATE) or the average treatment effect on the treated (ATT), as we
do above. ATE addresses the question of how outcomes would differ if everyone in the sample
were given the treatment versus everyone being given the control (Wooldridge, 2002). ATT,
on the other hand, estimates the analogous quantity averaging only over the subjects who were
actually treated. The estimand argument was added to the 2012 revision of the package which
integrated ATE weighting into the package and the ps function estimate of the propensity score.

The stop.method argument specifies a set (or sets) of rules and measures for assessing
the balance, or equivalence, established on the pretreatment covariates of the treatment and
weighted control group. The ps function selects the optimal number of GBM iterations to min-
imize the differences between the treatment and control groups as measured by the rules of the
given stop.method object. The package includes four built-in stop.method objects. They are
es.mean, es.max, ks.mean, and ks.max. The four stopping rules are defined by two components:
a balance metric for covariates and rule for summarizing across covariates. The balance metric
summarizes the difference between two univariate distributions of a single pre-treatment variable
(e.g., age). The default stopping rules in twang use two balance metrics: absolute standardized
bias (also referred to as the absolute standardized mean difference of the Effect S ize) and the
Kolmogorov-Smirnov (KS) statistic. The stopping rule use two different rules for summarizing
across covariates: the mean of the covariate balance metrics (“mean”) or the maximum of the
balance metrics (“max”). The first piece of the stopping rule name identifies the balance metric
(ES or KS) and the second piece specifies the method for summarizing across balance metrics.
For instance, es.mean uses the effect size or the absolute standardized bias and summarizes
across variables with the mean and the ks.max uses the KS statistics to assess balances and
summarizes using the maximum across variables and the other two stopping rules use the re-
maining two combinations of balance metrics and summary statistics. The variable distributions
used in the balance metrics depend on whether we are interested in estimating the ATT or ATE,
and correct specification of these distributions is set automatically by the specification of the
estimand in the ps() function.
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Having fit the ps object, the analyst should perform several diagnostic checks before esti-
mating the causal effect in question. The first of these diagnostic checks makes sure that the
specified value of n.trees allowed GBM to explore sufficiently complicated models. We can do
this quickly with the plot() function.1 As a default, the plot() function applied to a ps object
gives the balance measures as a function of the number of iterations in the GBM algorithm, with
higher iterations corresponding to more complicated fitted models. In the example below, 2127
iterations minimized the average effect size difference and 1756 iterations minimized the largest
of the eight Kolmogorov-Smirnov (KS) statistics computed for the covariates. If it appears that
additional iterations would be likely to result in lower values of the balance statistic, n.trees
should be increased. However, after a point, additional complexity typically makes the balance
worse, as in the example below. This figure also gives information on how compatible two or
more stopping rules are: if the minima for multiple stopping rules under consideration are near
one another, the results should not be sensitive to which stopping rule one uses for the final
analysis. See Section 5.3 for a discussion of these and other balance measures.

> plot(ps.lalonde)
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If we wish to focus on only one stopping rule, the plotting commands also take a subset

argument.

1In versions 1.0.x of the twang package, the ps function itself included some plotting functions. This is no
longer the case (and the function no longer includes a plots argument); these functions have been moved to the
generic plot() function.
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> plot(ps.lalonde, subset = 2)
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The gbm package has various tools for exploring the relationship between the covariates and
the treatment assignment indicator if these are of interest. summary() computes the relative
influence of each variable for estimating the probability of treatment assignment. The gbm
estimates depend on the number of iterations at which the gbm model is evaluated, which is
specified by the n.trees argument in the summary method for gbm. In this example, we choose
the number of iterations to be the optimal number for minimizing the largest of the KS statistics.
This value can be found in the ps.lalonde$desc$ks.max.ATT$n.trees. Figure 1 shows the
barchart of the relative influence and is produced when plot=TRUE in the call to summary().

> summary(ps.lalonde$gbm.obj,

+ n.trees=ps.lalonde$desc$ks.max.ATT$n.trees,

+ plot=FALSE)

var rel.inf

1 black 57.83094183

2 age 16.51591133

3 re74 15.61359263

4 re75 3.58011684

5 married 3.02141880

6 educ 2.91846328

7 nodegree 0.43884552

8 hispan 0.08070978

2.1 Assessing “balance” using balance tables

Having estimated the propensity scores, bal.table() produces a table that shows how well the
resulting weights succeed in manipulating the control group so that its weighted pretreatment
characteristics match, or balance, those of the unweighted treatment group if estimand = "ATT"

or the control and treatment groups so that the weighted pretreatment characteristics match,
or balance, with one another if estimand = "ATE". By default, the bal.table() function
uses the value of estimand set with the ps() function call. For example, in the analysis we
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Figure 1: Relative influence of the covariates on the estimated propensity score

set estimand = "ATT" when calling ps() to estimate the propensity scores and the resulting
ps.object, ps.lalonde, contains an element “estimand” which takes the value "ATT". The
function bal.table() checks this value and automatically uses ATT weights when checking
balance and comparing the distributions of pre-treatment variables for the weighted control
group with those from the unweighted treatment group.
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> lalonde.balance <- bal.table(ps.lalonde)

> lalonde.balance

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 28.030 10.787 -0.309 -2.994 0.003 0.158 0.003

educ 10.346 2.011 10.235 2.855 0.055 0.547 0.584 0.111 0.074

black 0.843 0.365 0.203 0.403 1.757 19.371 0.000 0.640 0.000

hispan 0.059 0.237 0.142 0.350 -0.349 -3.413 0.001 0.083 0.317

nodegree 0.708 0.456 0.597 0.491 0.244 2.716 0.007 0.111 0.074

married 0.189 0.393 0.513 0.500 -0.824 -8.607 0.000 0.324 0.000

re74 2095.574 4886.620 5619.237 6788.751 -0.721 -7.254 0.000 0.447 0.000

re75 1532.055 3219.251 2466.484 3291.996 -0.290 -3.282 0.001 0.288 0.000

$es.mean.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.802 7.279 0.002 0.015 0.988 0.122 0.892

educ 10.346 2.011 10.573 2.089 -0.113 -0.706 0.480 0.099 0.977

black 0.843 0.365 0.842 0.365 0.003 0.027 0.978 0.001 1.000

hispan 0.059 0.237 0.042 0.202 0.072 0.804 0.421 0.017 1.000

nodegree 0.708 0.456 0.609 0.489 0.218 0.967 0.334 0.099 0.977

married 0.189 0.393 0.189 0.392 0.002 0.012 0.990 0.001 1.000

re74 2095.574 4886.620 1556.930 3801.566 0.110 1.027 0.305 0.066 1.000

re75 1532.055 3219.251 1211.575 2647.615 0.100 0.833 0.405 0.103 0.969

$ks.max.ATT

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

age 25.816 7.155 25.764 7.408 0.007 0.055 0.956 0.107 0.919

educ 10.346 2.011 10.572 2.140 -0.113 -0.712 0.477 0.107 0.919

black 0.843 0.365 0.835 0.371 0.022 0.187 0.852 0.008 1.000

hispan 0.059 0.237 0.043 0.203 0.069 0.779 0.436 0.016 1.000

nodegree 0.708 0.456 0.601 0.490 0.235 1.100 0.272 0.107 0.919

married 0.189 0.393 0.199 0.400 -0.024 -0.169 0.866 0.010 1.000

re74 2095.574 4886.620 1673.666 3944.600 0.086 0.800 0.424 0.054 1.000

re75 1532.055 3219.251 1257.242 2674.922 0.085 0.722 0.471 0.094 0.971

bal.table() returns information on the pretreatment covariates before and after weighting.
The object is a list with named components, one for an unweighted analysis (named unw) and one
for each stop.method specified, here es.mean and ks.max. McCaffrey et al (2004) essentially
used es.mean for the analyses, but our more recent work has sometimes used ks.max. See
Section 5.3 for a more detailed description of these choices.

If there are missing values (represented as NA) in the covariates, twang will attempt to con-
struct weights that also balance rates of missingness in the treatment and control arms. In this
case, the bal.table() will have an extra row for each variable that has missing entries.

The columns of the table consist of the following items:

tx.mn, ct.mn The treatment means and the control means for each of the variables. The
unweighted table (unw) shows the unweighted means. For each stopping rule the means
are weighted using weights corresponding to the gbm model selected by ps() using the
stopping rule. When estimand = "ATT" the weights for the treatment group always equal
1 for all cases and there is no difference between unweighted and propensity score weighted
tx.mn.
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tx.sd, ct.sd The propensity score weighted treatment and control groups’ standard deviations
for each of the variables. The unweighted table (unw) shows the unweighted standard
deviations

std.eff.sz The standardized effect size, defined as the treatment group mean minus the control
group mean divided by the treatment group standard deviation if estimand = "ATT" or
divided by the pooled sample (treatment and control) standard deviation if estimand =

"ATE". (In discussions of propensity scores this value is sometimes referred to as “standard-
ized bias”.) Occasionally, lack of treatment group or pooled sample variance on a covariate
results in very large (or infinite) standardized effect sizes. For purposes of analyzing mean
effect sizes across multiple covariates, we set all standardized effect sizes larger than 500
to NA (missing values).

stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or
a χ2 statistic. p is the associated p-value

ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. P-values for the
KS statistics are either derived from Monte Carlo simulations or analytic approximations,
depending on the specifications made in the perm.test.iters argument of the ps function.
For categorical variables this is just the χ2 test p-value

Components of these tables are useful for demonstrating that pretreatment differences be-
tween groups on observed variables have been eliminated using the weights. The xtable package
aids in formatting for LATEX and Word documents. Table 1 shows the results for ks.max refor-
matted for a LATEX document. For Word documents, paste the LATEX description of the table
into a Word document, highlight it and use Word tools to convert the text to a table using “&”
as the separator.

> library(xtable)

> pretty.tab <- lalonde.balance$ks.max.ATT[,c("tx.mn","ct.mn","ks")]

> pretty.tab <- cbind(pretty.tab, lalonde.balance$unw[,"ct.mn"])

> names(pretty.tab) <- c("E(Y1|t=1)","E(Y0|t=1)","KS","E(Y0|t=0)")

> xtable(pretty.tab,

+ caption = "Balance of the treatment and comparison groups",

+ label = "tab:balance",

+ digits = c(0, 2, 2, 2, 2),

+ align=c("l","r","r","r","r"))

E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 25.76 0.11 28.03
educ 10.35 10.57 0.11 10.23
black 0.84 0.83 0.01 0.20
hispan 0.06 0.04 0.02 0.14
nodegree 0.71 0.60 0.11 0.60
married 0.19 0.20 0.01 0.51
re74 2095.57 1673.67 0.05 5619.24
re75 1532.06 1257.24 0.09 2466.48

Table 1: Balance of the treatment and comparison groups

The summary() method for ps objects offers a compact summary of the sample sizes of the
groups and the balance measures. If perm.test.iters>0 was used to create the ps object, then
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Monte Carlo simulation is used to estimate p-values for the maximum KS statistic that would
be expected across the covariates, had individuals with the same covariate values been assigned
to groups randomly. Thus, a p-value of 0.04 for max.ks.p indicates that the largest KS statistic
found across the covariates is larger than would be expected in 96% of trials in which the same
cases were randomly assigned to groups.

> summary(ps.lalonde)

n.treat n.ctrl ess.treat ess.ctrl max.es

unw 185 429 185 429.00000 1.7567745

es.mean.ATT 185 429 185 22.96430 0.2177817

ks.max.ATT 185 429 185 27.05472 0.2348846

mean.es max.ks max.ks.p mean.ks iter

unw 0.56872589 0.6404460 NA 0.27024507 NA

es.mean.ATT 0.07746175 0.1223384 NA 0.06361021 2127

ks.max.ATT 0.08025994 0.1070761 NA 0.06282432 1756

In general, weighted means can have greater sampling variance than unweighted means from a
sample of equal size. The effective sample size (ESS) of the weighted comparison group captures
this increase in variance as

ESS =

(∑
i∈C wi

)2∑
i∈C w

2
i

. (1)

The ESS is approximately the number of observations from a simple random sample that
yields an estimate with sampling variation equal to the sampling variation obtained with the
weighted comparison observations. Therefore, the ESS will give an estimate of the number of
comparison participants that are comparable to the treatment group when estimand = "ATT".
The ESS is an accurate measure of the relative size of the variance of means when the weights are
fixed or they are uncorrelated with outcomes. Otherwise the ESS underestimates the effective
sample size (Little & Vartivarian, 2004). With propensity score weights, it is rare that weights
are uncorrelated with outcomes. Hence the ESS typically gives a lower bound on the effective
sample size, but it still serves as a useful measure for choosing among alternative models and
assessing the overall quality of a model, even if it provides a possibly conservative picture of the
loss in precision due to weighting.

The ess.treat and ess.ctrl columns in the summary results shows the ESS for the esti-
mated propensity scores. Note that although the original comparison group had 429 cases, the
propensity score estimates effectively utilize only 23 or 27.1 of the comparison cases, depending
on the rules and measures used to estimate the propensity scores. While this may seem like a
large loss of sample size, this indicates that many of the original cases were unlike the treatment
cases and, hence, were not useful for isolating the treatment effect. Moreover, similar or even
greater reductions in ESS would be expected from alternative approaches to using propensity
scores, such as matching or stratification. Since the estimand of interest in this example is ATT,
ess.treat = n.treat throughout (i.e., all treatment cases have a weight of 1).

2.2 Graphical assessments of balance

The plot() method can generate useful diagnostic plots from the propensity score objects. The
full set of plots available in twang and the argument value of plot to produce each one are given
in Table 2. The convergence plot — the default — was discussed above.

The plot() function takes a plots argument in order to produce other diagnostic plots. For
example, specifying plots = 2 or plots = "boxplot" produces boxplots illustrating the spread
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of the estimated propensity scores in the treatment and comparison groups. Whereas propensity
score stratification requires considerable overlap in these spreads, excellent covariate balance can
often be achieved with weights, even when the propensity scores estimated for the treatment and
control groups show little overlap.

> plot(ps.lalonde, plots=2)
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Descriptive Numeric Description
argument argument

"optimize" 1 Balance measure as a function of GBM iterations
"boxplot" 2 Boxplot of treatment/control propensity scores

"es" 3 Standardized effect size of pretreatment variables
"t" 4 t-test p-values for weighted pretreatment variables
"ks" 5 Kolmogorov-Smirnov p-values for weighted pretreatment variables

"histogram" 6 Histogram of weights for treatment/control

Table 2: Available options for plots argument to plot() function.

The effect size plot illustrates the effect of weights on the magnitude of differences between
groups on each pretreatment covariate. These magnitudes are standardized using the standard-
ized effect size described earlier. In these plots, substantial reductions in effect sizes are observed
for most variables (blue lines), with only one variable showing an increase in effect size (red
lines), but only a seemingly trivial increase. Closed red circles indicate a statistically significant
difference, many of which occur before weighting, none after. In some analyses variables can have
very little variance in the treatment group sample or the entire sample and group differences can
be very large relative to the standard deviations. In these situations, the user is warned that
some effect sizes are too large to plot.

> plot(ps.lalonde, plots=3)
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P-values from independent tests in which the null hypothesis is true have a uniform distribu-
tion. Therefore, a QQ plot comparing the quantiles of the observed p-values to the quantiles of
the uniform distribution illustrate whether group differences observed before and after weighting
are consistent with what we would expect to see had groups been formed by random assignment
(and hence the null hypothesis would be true). Setting plots = 4 or plots="t" generates such
QQ plots.

> plot(ps.lalonde, plots = 4)

Rank of p−value rank for pretreatment variables 
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Before weighting (closed circles), the groups have statistically significant differences on many
variables (i.e., p-values are near zero). After weighting (open circles) the p-values are generally
above the 45-degree line, which represents the cumulative distribution of a uniform variable on
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[0,1]. This indicates that the p-values are even larger than would be expected in a randomized
study.

One can inspect similar plots for the KS statistic with the argument plots = "ks" or

> plot(ps.lalonde, plots = 5)

Rank of p−value rank for pretreatment variables 
 (hollow is weighted, solid is unweighted)
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In all cases, the subset argument can be used if we wish to fous on results from one stopping
rule.

> plot(ps.lalonde, plots = 3, subset = 2)
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2.3 Analysis of outcomes

A separate R package, the survey package, is useful for performing the outcomes analyses
using weights. Its statistical methods account for the weights when computing standard error
estimates. It is not a part of the standard R installation but installing twang should automatically
install survey as well.

> library(survey)

The get.weights() function extracts the propensity score weights from a ps object. Those
weights may then be used as case weights in a svydesign object. By default, it returns weights
corresponding to the estimand (ATE or ATT) that was specified in the original call to ps(). If
needed, the user can override the default via the optional estimand argument.

> lalonde$w <- get.weights(ps.lalonde, stop.method="es.mean")

> design.ps <- svydesign(ids=~1, weights=~w, data=lalonde)

The stop.method argument specifies which GBM model, and consequently which weights,
to utilize.

The svydesign function from the survey package creates an object that stores the dataset
along with design information needed for analyses. See help(svydesign) for more details on
setting up svydesign objects.

The aim of the National Supported Work Demonstration analysis is to determine whether
the program was effective at increasing earnings in 1978. The propensity score adjusted test can
be computed with svyglm.

> glm1 <- svyglm(re78 ~ treat, design=design.ps)

> summary(glm1)

Call:

svyglm(re78 ~ treat, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5616.6 884.9 6.347 4.28e-10 ***

treat 732.5 1056.6 0.693 0.488

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49804197)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $733 for those that participated in the
NSW compared with similarly situated people observed in the CPS. The effect, however, does
not appear to be statistically significant.

Some authors have recommended utilizing both propensity score adjustment and additional
covariate adjustment to minimize mean square error or to obtain “doubly robust” estimates of
the treatment effect (Huppler-Hullsiek & Louis 2002, Bang & Robins 2005). These estimators

13



are consistent if either the propensity scores are estimated correctly or the regression model
is specified correctly. For example, note that the balance table for ks.max.ATT made the two
groups more similar on nodegree, but still some differences remained, 70.8% of the treatment
group had no degree while 60.1% of the comparison group had no degree. While linear regression
is sensitive to model misspecification when the treatment and comparison groups are dissimilar,
the propensity score weighting has made them more similar, perhaps enough so that additional
modeling with covariates can adjust for any remaining differences. In addition to potential bias
reduction, the inclusion of additional covariates can reduce the standard error of the treatment
effect if some of the covariates are strongly related to the outcome.

> glm2 <- svyglm(re78 ~ treat + nodegree, design=design.ps)

> summary(glm2)

Call:

svyglm(re78 ~ treat + nodegree, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6768.4 1471.0 4.601 5.11e-06 ***

treat 920.3 1082.8 0.850 0.396

nodegree -1891.8 1261.9 -1.499 0.134

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49013778)

Number of Fisher Scoring iterations: 2

Adjusting for the remaining group difference in the nodegree variable slightly increased the
estimate of the program’s effect to $920, but the difference is still not statistically significant.
We can further adjust for the other covariates, but that too in this case has little effect on the
estimated program effect.

> glm3 <- svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ design=design.ps)

> summary(glm3)

Call:

svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, design = design.ps)

Survey design:

svydesign(ids = ~1, weights = ~w, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.459e+03 4.289e+03 -0.573 0.56671
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treat 7.585e+02 1.019e+03 0.745 0.45674

age 3.005e+00 5.558e+01 0.054 0.95691

educ 7.488e+02 2.596e+02 2.884 0.00406 **

black -7.627e+02 1.012e+03 -0.753 0.45153

hispan 6.106e+02 1.711e+03 0.357 0.72123

nodegree 5.350e+02 1.626e+03 0.329 0.74227

married 4.918e+02 1.072e+03 0.459 0.64660

re74 5.699e-02 1.801e-01 0.316 0.75176

re75 1.568e-01 1.946e-01 0.806 0.42076

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 47150852)

Number of Fisher Scoring iterations: 2

2.4 Estimating the program effect using linear regression

The more traditional regression approach to estimating the program effect would fit a linear
model with a treatment indicator and linear terms for each of the covariates.

> glm4 <- lm(re78 ~ treat + age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data=lalonde)

> summary(glm4)

Call:

lm(formula = re78 ~ treat + age + educ + black + hispan + nodegree +

married + re74 + re75, data = lalonde)

Residuals:

Min 1Q Median 3Q Max

-13595 -4894 -1662 3929 54570

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.651e+01 2.437e+03 0.027 0.9782

treat 1.548e+03 7.813e+02 1.982 0.0480 *

age 1.298e+01 3.249e+01 0.399 0.6897

educ 4.039e+02 1.589e+02 2.542 0.0113 *

black -1.241e+03 7.688e+02 -1.614 0.1071

hispan 4.989e+02 9.419e+02 0.530 0.5966

nodegree 2.598e+02 8.474e+02 0.307 0.7593

married 4.066e+02 6.955e+02 0.585 0.5590

re74 2.964e-01 5.827e-02 5.086 4.89e-07 ***

re75 2.315e-01 1.046e-01 2.213 0.0273 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6948 on 604 degrees of freedom
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Multiple R-squared: 0.1478, Adjusted R-squared: 0.1351

F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16

This model estimates a rather strong treatment effect, estimating a program effect of $1548
with a p-value=0.048. Several variations of this regression approach also estimate strong pro-
gram effects. For example using square root transforms on the earnings variables yields a p-
value=0.016. These estimates, however, are very sensitive to the model structure since the treat-
ment and control subjects differ greatly as seen in the unweighted balance comparison ($unw)
from bal.table(ps.lalonde).

2.5 Propensity scores estimated from logistic regression

Propensity score analysis is intended to avoid problems associated with the misspecification of
covariate adjusted models of outcomes, but the quality of the balance and the treatment effect
estimates can be sensitive to the method used to estimate the propensity scores. Consider
estimating the propensity scores using logistic regression instead of ps().

> ps.logit <- glm(treat ~ age + educ + black + hispan + nodegree +

+ married + re74 + re75,

+ data = lalonde,

+ family = binomial)

> lalonde$w.logit <- rep(1,nrow(lalonde))

> lalonde$w.logit[lalonde$treat==0] <- exp(predict(ps.logit,subset(lalonde,treat==0)))

predict() for logistic regression model produces estimates on the log-odds scale by default.
Exponentiating those predictions for the comparison subjects gives the ATT weights p/(1− p).
dx.wts() from the twang package diagnoses the balance for an arbitrary set of weights producing
a balance table. This function requires the user to specify the estimand argument in order
to perform the appropriate calculations relative to the target group on which we are drawing
inferences.

> bal.logit <- dx.wts(x = lalonde$w.logit,

+ data=lalonde,

+ vars=c("age","educ","black","hispan","nodegree",

+ "married","re74","re75"),

+ treat.var="treat",

+ perm.test.iters=0, estimand = "ATT")

> bal.logit

type n.treat n.ctrl ess.treat ess.ctrl max.es

1 unw 185 429 185 429.00000 1.7567745

2 185 429 185 99.81539 0.1188496

mean.es max.ks mean.ks iter

1 0.5687259 0.6404460 0.27024507 NA

2 0.0318841 0.3078039 0.09302319 NA

Applying the bal.table() function to this object returns a variable-by-variable summary of
balance, just like it did for the ps object.
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> bal.tab.logit <- bal.table(bal.logit)

> bal.tab.logit

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz

age 25.816 7.155 28.030 10.787 -0.309

educ 10.346 2.011 10.235 2.855 0.055

black 0.843 0.365 0.203 0.403 1.757

hispan 0.059 0.237 0.142 0.350 -0.349

nodegree 0.708 0.456 0.597 0.491 0.244

married 0.189 0.393 0.513 0.500 -0.824

re74 2095.574 4886.620 5619.237 6788.751 -0.721

re75 1532.055 3219.251 2466.484 3291.996 -0.290

stat p ks ks.pval

age -2.994 0.003 0.158 0.003

educ 0.547 0.584 0.111 0.074

black 19.371 0.000 0.640 0.000

hispan -3.413 0.001 0.083 0.317

nodegree 2.716 0.007 0.111 0.074

married -8.607 0.000 0.324 0.000

re74 -7.254 0.000 0.447 0.000

re75 -3.282 0.001 0.288 0.000

[[2]]

tx.mn tx.sd ct.mn ct.sd std.eff.sz

age 25.816 7.155 24.966 10.535 0.119

educ 10.346 2.011 10.403 2.459 -0.028

black 0.843 0.365 0.845 0.362 -0.006

hispan 0.059 0.237 0.059 0.236 0.001

nodegree 0.708 0.456 0.690 0.463 0.040

married 0.189 0.393 0.171 0.377 0.047

re74 2095.574 4886.620 2106.045 4235.832 -0.002

re75 1532.055 3219.251 1496.541 2716.258 0.011

stat p ks ks.pval

age 0.739 0.460 0.308 0.000

educ -0.219 0.827 0.036 1.000

black -0.069 0.945 0.002 1.000

hispan 0.008 0.993 0.000 1.000

nodegree 0.332 0.740 0.018 1.000

married 0.456 0.649 0.019 1.000

re74 -0.022 0.983 0.228 0.002

re75 0.107 0.915 0.133 0.185

For weights estimated with logistic regression, the largest KS statistic was reduced from the
unweighted sample’s largest KS of 0.64 to 0.31, which is still quite a large KS statistic. Table 3
shows the details of the balance of the treatment and comparison groups. The means of the two
groups appear to be quite similar while the KS statistic shows substantial differences in their
distributions.

> pretty.tab <- bal.table(bal.logit)[[2]][,c("tx.mn","ct.mn","ks")]

> pretty.tab <- cbind(pretty.tab, bal.table(bal.logit)[[1]]$ct.mn)
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> names(pretty.tab) <- c("E(Y1|t=1)","E(Y0|t=1)","KS","E(Y0|t=0)")

> xtable(pretty.tab,

+ caption = "Logistic regression estimates of the propensity scores",

+ label = "tab:balancelogit",

+ digits = c(0, 2, 2, 2, 2),

+ align=c("l","r","r","r","r"))

E(Y1|t=1) E(Y0|t=1) KS E(Y0|t=0)
age 25.82 24.97 0.31 28.03
educ 10.35 10.40 0.04 10.23
black 0.84 0.84 0.00 0.20
hispan 0.06 0.06 0.00 0.14
nodegree 0.71 0.69 0.02 0.60
married 0.19 0.17 0.02 0.51
re74 2095.57 2106.05 0.23 5619.24
re75 1532.06 1496.54 0.13 2466.48

Table 3: Logistic regression estimates of the propensity scores

Table 4 compares the balancing quality of the weights directly with one another.

n.treat ess.ctrl max.es mean.es max.ks mean.ks
unw 185 429.00 1.76 0.57 0.64 0.27
logit 185 99.82 0.12 0.03 0.31 0.09
es.mean.ATT 185 22.96 0.22 0.08 0.12 0.06
ks.max.ATT 185 27.05 0.23 0.08 0.11 0.06

Table 4: Summary of the balancing properties of logistic regression and gbm

> design.logit <- svydesign(ids=~1, weights=~w.logit, data=lalonde)

> glm6 <- svyglm(re78 ~ treat, design=design.logit)

> summary(glm6)

Call:

svyglm(re78 ~ treat, design = design.logit)

Survey design:

svydesign(ids = ~1, weights = ~w.logit, data = lalonde)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5135.1 588.9 8.719 <2e-16 ***

treat 1214.1 824.7 1.472 0.142

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 49598072)

Number of Fisher Scoring iterations: 2
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The analysis estimates an increase in earnings of $1214 for those that participated in the
NSW compared with similarly situated people observed in the CPS. Table 5 compares all of the
treatment effect estimates.

Treatment effect PS estimate Linear adjustment
$733 GBM, minimize KS none
$920 GBM, minimize KS nodegree
$758 GBM, minimize KS all

$1548 None all
$1214 Logistic regression none
$1237 Logistic regression all

Table 5: Treatment effect estimates by various methods

3 An ATE example

In the analysis of Section 2, we focused on estimating ATT for the lalonde dataset. In this
situation, the ATE is not of great substantive interest because not all people who are offered
entrance into the program could be expected to take advantage of the opportunity. Further,
there is some evidence that the treated subjects were drawn from a subset of the covariate space.
In particular, in an ATE analysis, we see that we are unable to achieve balance, especially for
the “black” indicator.

We now turn to an ATE analysis that is feasible and meaningful. We focus on the lindner

dataset, which was included in the USPS package (Obenchain 2011), and is now included in twang

for convenience. A tutorial by Helmreich and Pruzek (2009; HP) for the PSAgraphics package
also uses propensity scores to analyze a portion of these data. HP describe the data as follows
on p. 3 with our minor recodings in square braces:

The lindner data contain data on 996 patients treated at the Lindner Center, Christ
Hospital, Cincinnati in 1997. Patients received a Percutaneous Coronary Intervention
(PCI). The data consists of 10 variables. Two are outcomes: [sixMonthSurvive]
ranges over two values... depending on whether patients surved to six months post
treatment [denoted by TRUE] or did not survive to six months [FALSE]... Secondly,
cardbill contains the costs in 1998 dollars for the first six months (or less if the
patient did not survive) after treatment... The treatment variable is abcix, where
0 indicates PCI treatment and 1 indicates standard PCI treatment and additional
treatment in some form with abciximab. Covariates include acutemi, 1 indicating a
recent acute myocardial infarction and 0 not; ejecfrac for the left ventricle ejection
fraction, a percentage from 0 to 90; ves1proc giving the number of vessels (0 to 5)
involved in the initial PCI; stent with 1 indicating coronary stent inserted, 0 not;
diabetic where 1 indicates that the patient has been diagnosed with diabetes, 0 not;
height in centimeters and female coding the sex of the patent, 1 for female, 0 for
male.

HP focus on cardbill — the cost for the first months after treatment — as their outcome
of interest. However, since not all patients survived to six months, it is not clear whether
a lower value of cardbill is good or not. For this reason, we choose six-month survival
(sixMonthSurvive) as our outcome of interest.

Ignoring pre-treatment variables, we see that abcix is associated with lower rates of 6-month
mortality:
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> data(lindner)

> table(lindner$sixMonthSurvive, lindner$abcix)

0 1

FALSE 15 11

TRUE 283 687

> chisq.test(table(lindner$sixMonthSurvive, lindner$abcix))

Pearson's Chi-squared test with Yates' continuity

correction

data: table(lindner$sixMonthSurvive, lindner$abcix)

X-squared = 8.5077, df = 1, p-value = 0.003536

The question is whether this association is causal. If health care policies were to be made on
the basis of these data, we would wish to elicit expert opinion as to whether there are likely to
be other confounding pretreatment variables. For this tutorial, we simply follow HP in choosing
the pre-treatment covariates. The twang model is fit as follows

> set.seed(1)

> ps.lindner <- ps(abcix ~ stent + height + female + diabetic +

+ acutemi + ejecfrac + ves1proc, data = lindner,

+ verbose = FALSE, estimand = "ATE")

We set estimand = "ATE" because we are interested in the effects of abciximab on everyone
in the population. We do not specify the stopping rules. Consequently ps() uses the defaults:
es.mean and ks.max. We then inspect pre- and post-weighting balance with the command

> bal.table(ps.lindner)

$unw

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.705 0.456 0.584 0.494 0.259 3.624 0.000 0.121 0.004

height 171.443 10.695 171.446 10.589 0.000 -0.005 0.996 0.025 0.999

female 0.331 0.471 0.386 0.488 -0.115 -1.647 0.100 0.055 0.531

diabetic 0.205 0.404 0.268 0.444 -0.153 -2.127 0.034 0.064 0.349

acutemi 0.179 0.384 0.060 0.239 0.342 5.923 0.000 0.119 0.005

ejecfrac 50.403 10.419 52.289 10.297 -0.182 -2.640 0.008 0.114 0.008

ves1proc 1.463 0.706 1.205 0.480 0.399 6.693 0.000 0.188 0.000

$ks.mean.ATE

tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.683 0.466 0.657 0.475 0.054 0.718 0.473 0.025 1.000

height 171.470 10.550 171.591 10.589 -0.011 -0.155 0.877 0.015 1.000

female 0.338 0.473 0.345 0.476 -0.015 -0.200 0.841 0.007 1.000

diabetic 0.215 0.411 0.229 0.421 -0.033 -0.432 0.666 0.014 1.000

acutemi 0.148 0.355 0.107 0.310 0.116 1.331 0.183 0.040 0.935

ejecfrac 51.052 10.333 51.604 9.110 -0.053 -0.798 0.425 0.027 0.999

ves1proc 1.395 0.666 1.337 0.573 0.091 1.203 0.229 0.028 0.999

$es.mean.ATE
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tx.mn tx.sd ct.mn ct.sd std.eff.sz stat p ks ks.pval

stent 0.683 0.466 0.656 0.476 0.057 0.752 0.452 0.027 0.999

height 171.466 10.542 171.584 10.664 -0.011 -0.149 0.882 0.016 1.000

female 0.338 0.473 0.345 0.476 -0.016 -0.209 0.834 0.007 1.000

diabetic 0.215 0.411 0.231 0.422 -0.039 -0.512 0.609 0.016 1.000

acutemi 0.148 0.355 0.108 0.311 0.115 1.327 0.185 0.040 0.938

ejecfrac 51.037 10.350 51.544 9.172 -0.049 -0.730 0.466 0.027 0.999

ves1proc 1.396 0.666 1.342 0.579 0.084 1.089 0.276 0.026 1.000

This balance table shows that stent, acutemi, ejectfrac and ves1proc were all significantly
imbalanced before weighting. After weighting (using either stop.method considered) we do not
see problems in this regard. Examining plot(ps.lindner, plots = x) for x running from 1
to 5 does not reveal problems, either. In regard to the optimize plot, we note that the scales of
the KS and ES statistics presented in the optimize plots are not necessarily comparable. The
fact that the KS values are lower than the ES values in the optimize plot does not suggest that
the KS stopping rule is finding superior models. Each panel of the optimize plot indicates the
gbm model that minimizes each stopping rule. The panels should not be compared other than
to compare the number of iterations selected by each rule.

> plot(ps.lindner, plots = 1)
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> plot(ps.lindner, plots = 2)
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> plot(ps.lindner, plots = 3)
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> plot(ps.lindner, plots = 4)

Rank of p−value rank for pretreatment variables 
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> plot(ps.lindner, plots = 5)

Rank of p−value rank for pretreatment variables 
 (hollow is weighted, solid is unweighted)
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From a call to summary(), we see that the es.mean.ATE stopping rule results in a slightly
higher ESS with comparable balance measures, so we proceed with those weights. Also, we note
that ess.treat is no longer equal to n.treat since we are focusing on ATE rather than ATT.

> summary(ps.lindner)

n.treat n.ctrl ess.treat ess.ctrl max.es

unw 698 298 698.0000 298.0000 0.3988701
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ks.mean.ATE 698 298 655.6754 228.8501 0.1157184

es.mean.ATE 698 298 658.4838 230.7292 0.1146893

mean.es max.ks max.ks.p mean.ks iter

unw 0.20712864 0.18841945 NA 0.09791845 NA

ks.mean.ATE 0.05344346 0.04012757 NA 0.02235951 2603

es.mean.ATE 0.05291540 0.03977072 NA 0.02273098 2096

As before, we use the survey package to reweight our sample and perform the analysis.

> lindner$w <- get.weights(ps.lindner, stop.method = "es.mean")

> design.ps <- svydesign(ids=~1, weights = ~w, data = lindner)

> svychisq(~sixMonthSurvive + abcix, design = design.ps)

Pearson's X^2: Rao & Scott adjustment

data: svychisq(~sixMonthSurvive + abcix, design = design.ps)

F = 9.3894, ndf = 1, ddf = 995, p-value = 0.002241

The reweighting does not diminish the association between the treatment and the outcome.
Indeed, it is marginally more significant after the reweighting.

4 Non-response weights

The twang package was designed to estimate propensity score weights for the evaluation of
treatment effects in observational or quasi-experimental studies. However, we find that the
package includes functions and diagnostic tools that are highly valuable for other applications,
such as for generating and diagnosing nonresponse weights for survey nonresponse or study
attrition. We now present an example that uses the tools in twang. This example uses the subset
of the US Sustaining Effects Study data distributed with the HLM software (Bryk, Raudenbush,
Congdon, 1996) and also available in the R package mlmRev. The data include mathematics test
scores for 1721 students in kindergarten to fourth grade. They also include student race (black,
Hispanic, or other), gender, an indicator for whether or not the student had been retained in
grade, the percent low income students at the school, the school size, the percent of mobile
students, the students’ grade-levels, student and school IDs, and grades converted to year by
centering. The study analysis plans to analyze growth in math achievement from grade 1 to grade
4 using only students with complete data. However, the students with complete data differ from
other students. To reduce bias that could potentially result from excluding incomplete cases,
our analysis plan is to weight complete cases with nonresponse weights.

The goal of nonresponse weighting is to develop weights for the respondents that make them
look like the entire sample — both the respondents and nonrespondents. Since the respondents
already look like themselves, the hard part is to figure out how well each respondent represents
the nonrespondents. Nonresponse weights equal the reciprocal of the probability of response and
are applied only to respondents.

Note that the weights p are equivalent to the propensity score if we consider subjects with an
observed outcome to be the “treated” group, and those with an unobserved outcome to be the
“controls”. We wish to reweight the sample to make it equivalent to the population from which
the sample was drawn, so ATE weights are more appropriate in this case. Further, recall that
the weights for the treated subjects are 1/p in an ATE analysis. Therefore we can reweight the
sample of respondents using the get.weights() function.

Before we can generate nonresponse weights, we need to prepare the data using the following
commands. First we load the data.
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> data(egsingle)

Next we create the patterns of grades for which students have responses

> tmp <- sapply(split(egsingle,egsingle$childid),function(x){

+ paste(as.character(x$grade),collapse="")})

identify students with test scores for every grade from 1 to 4

> tmp <- data.frame(childid=names(tmp), gpatt=tmp,

+ resp=as.numeric((1:length(tmp)) %in%

+ grep("1234",as.character(tmp))))

and merge this back to create a single data frame

> egsingle <- merge(egsingle, tmp)

Because nonresponse is a student-level variable rather than a student-by-year-level variable
we create one record per student.

> egsingle.one <-unique(egsingle[,-c(3:6)])

We also create a race variable

> egsingle.one$race <- as.factor(race <- ifelse(egsingle.one$black==1, 1,

+ ifelse(egsingle.one$hispanic==1, 2, 3)))

As discussed above, to use ps() to estimate nonresponse, we need to let respondents be the
treatment group by modeling an indicator of response.

> egsingle.ps <-

+ ps(resp ~ race + female + size + lowinc + mobility,

+ data=egsingle.one,

+ stop.method=c("es.mean","ks.max"),

+ n.trees=2500,

+ verbose=FALSE,

+ estimand = "ATE")

The optimal number of iterations for gbm to minimize the maximum KS statistic is 2468 and
the optimal number of iterations for gbm to minimize the average effect size is 2379. The weights
do an excellent job matching the distribution of the respondent group covariates to those of the
nonrespondents as shown in Table 6.

> pretty.tab<-bal.table(egsingle.ps)$ks.max.ATE[,c("tx.mn","ct.mn","std.eff.sz","ks")]

> names(pretty.tab) <- c("Non-responders","Weighted responders","Std ES","KS")

> xtable(pretty.tab,

+ caption = "Balance of the nonrespondents and respondents",

+ label = "tab:balance2",

+ digits = c(0, 2, 2, 2, 2),

+ align=c("l","r","r","r","r"))

The final steps are to find the ATE weights

> egsingle.one$wgt <- get.weights(egsingle.ps, stop.method="ks.max")

and select only the records with an observed outcome.

> egsinge.resp <- merge(subset(egsingle, subset=resp==1),

+ subset(egsingle.one, subset=resp==1,

+ select=c(childid, wgt)) )
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Figure 2: Optimization of es.mean.ATE and ks.max.ATE for nonresponse weighting of egsingle
data. The horizontal axes indicate the number of iterations and the vertical axes indicate the
measure of imbalance between the two groups. For es.mean.ATE the measure is the average
effect size difference between the two groups and for ks.max.ATE the measure is the largest of
the KS statistics
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Non-responders Weighted responders Std ES KS
race:1 0.69 0.70 -0.03 0.01
race:2 0.14 0.14 -0.01 0.00
race:3 0.17 0.15 0.04 0.02
female:Female 0.49 0.49 -0.01 0.00
female:Male 0.51 0.51 0.01 0.00
size 756.72 758.89 -0.01 0.02
lowinc 78.52 78.48 0.00 0.03
mobility 34.23 34.79 -0.04 0.02

Table 6: Balance of the nonrespondents and respondents

5 The details of twang

5.1 Propensity scores and weighting

Propensity scores can be used to reweight comparison cases so that the distribution of their
features match the distribution of features of the treatment cases, for ATT, or cases from both
treatment and control groups to match each other, for ATE (Rosenbaum 1987, Wooldridge 2002,
Hirano and Imbens 2001, McCaffrey et al. 2004) Let f(x|t = 1) be the distribution of features
for the treatment cases and f(x|t = 0) be the distribution of features for the comparison cases. If
treatments were randomized then we would expect these two distributions to be similar. When
they differ for ATT we will construct a weight, w(x), so that

f(x|t = 1) = w(x)f(x|t = 0). (2)

For example, if f(age=65, sex=F|t = 1) = 0.10 and f(age=65, sex=F|t = 0) = 0.05 (i.e. 10%
of the treatment cases and 5% of the comparison cases are 65 year old females) then we need
to give a weight of 2.0 to every 65 year old female in the comparison group so that they have
the same representation as in the treatment group. More generally, we can solve (2) for w(x)
and apply Bayes Theorem to the numerator and the denominator to give an expression for the
propensity score weight for comparison cases,

w(x) = K
f(t = 1|x)

f(t = 0|x)
= K

P (t = 1|x)

1− P (t = 1|x)
, (3)

where K is a normalization constant that will cancel out in the outcomes analysis. Equation
(3) indicates that if we assign a weight to comparison case i equal to the odds that a case with
features xi would be exposed to the treatment, then the distribution of their features would
balance. Note that for comparison cases with features that are atypical of treatment cases, the
propensity score P (t = 1|x) would be near 0 and would produce a weight near 0. On the other
hand, comparison cases with features typical of the treatment cases would receive larger weights.

For ATE, each group is weighted to match the population. The weight must satisfy:

f(x|t = 1) = w(x)f(x), and (4)

f(x|t = 0) = w(x)f(x), and (5)

Again using Bayes Theorem we obtain w(x) = 1/f(x|t = 1) for the treatment group and w(x) =
1/f(x|t = 0) for the control group.
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5.2 Estimating the propensity score

In randomized studies P (t = 1|x) is known and fixed in the study design. In observational
studies the propensity score is unknown and must be estimated, but poor estimation of the
propensity scores can cause just as much of a problem for estimating treatment effects as poor
regression modeling of the outcome. Linear logistic regression is the common method for es-
timating propensity scores, and can suffice for many problems. Linear logistic regression for
propensity scores estimates the log-odds of a case being in the treatment given x as

log
P (t = 1|x)

1− P (t = 1|x)
= β′x (6)

Usually, β is selected to maximize the logistic log-likelihood

`β =
1

n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi)) (7)

Maximizing (7) provides the maximum likelihood estimates of β. However, in an attempt
to remove as much confounding as possible, observational studies often record data on a large
number of potential confounders, many of which can be correlated with one another. Standard
methods for fitting logistic regression models to such data with the iteratively reweighted least
squares algorithm can be statistically and numerically unstable. To improve the propensity score
estimates we might also wish to include non-linear effects and interactions in x. The inclusion
of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the
lasso (least absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani
(1996). For logistic regression, lasso estimation replaces (7) with a version that penalizes the
absolute magnitude of the coefficients

`β =
1

n

n∑
i=1

tiβ
′xi − log (1 + exp(β′xi))− λ

J∑
j=1

|βj | (8)

The second term on the right-hand side of the equation is the penalty term since it decreases
the overall of `β when there are coefficient that are large in absolute value. Setting λ = 0 returns
the standard (and potentially unstable) logistic regression estimates of β. Setting λ to be very
large essentially forces all of the βj to be equal to 0 (the penalty excludes β0). For a fixed value

of λ the estimated β̂ can have many coefficients exactly equal to 0, not just extremely small but
precisely 0, and only the most powerful predictors of t will be non-zero. As a result the absolute
penalty operates as a variable selection penalty. In practice, if we have several predictors of t that
are highly correlated with each other, the lasso tends to include all of them in the model, shrink
their coefficients toward 0, and produce a predictive model that utilizes all of the information
in the covariates, producing a model with greater out-of-sample predictive performance than
models fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential con-
founders and their interactions. That is, in x we will include indicator functions for continu-
ous variables like I(age < 15), I(age < 16), . . . , I(age < 90), etc., for categorical variables like
I(sex = male), I(prior MI = TRUE), and interactions among them like I(age < 16)I(sex =
male)I(prior MI = TRUE). This collection of basis functions spans a plausible set of propensity
score functions, are computationally efficient, and are flat at the extremes of x reducing the
likelihood of propensity score estimates near 0 and 1 that can occur with linear basis functions
of x. Theoretically with the lasso we can estimate the model in (8), selecting a λ small enough
so that it will eliminate most of the irrelevant terms and yield a sparse model with only the
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most important main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999)
effectively implements this strategy using a computationally efficient method that Efron et al.
(2004) showed is equivalent to optimizing (8). With boosting it is possible to maximize (8) for a
range of values of λ with no additional computational effort than for a specific value of λ. We use
boosted logistic regression as implemented in the generalized boosted modeling (gbm) package in
R (Ridgeway 2005).

5.3 Evaluating the weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates
that are uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment
for the observed covariates achieved by propensity score weighting is easy to evaluate. The
estimated propensity score weights should equalize the distributions of the cases’ features as in
(2). This implies that weighted statistics of the covariates of the comparison group should equal
the same statistics for the treatment group. For example, the weighted average of the age of
comparison cases should equal the average age of the treatment cases. To assess the quality of
the propensity score weights one could compare a variety of statistics such as means, medians,
variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The
twang package provides both the standardized effect sizes and KS statistics and p-values testing
for differences in the means and distributions of the covariates for analysts to use in assessing
balance.

5.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while the
propensity score estimation may require complex modeling. Once we have weights that equalize
the distribution of features of treatment and control cases by reweighting. For ATT, we give
each treatment case a weight of 1 and each comparison case a weight wi = p(xi)/(1− p(xi)). To
estimate the ATE, we give control cases weight wi = 1/p(xi) and we give the treatment cases
wi = 1/(1 − p(xi). We then estimate the treatment effect estimate with a weighted regression
model that contains only a treatment indicator. No additional covariates are needed if the
weights account for differences in x.

A combination of propensity score weighting and covariate adjustment can be useful for
several reasons. First, the propensity scores may not have been able to completely balance all
of the covariates. The inclusion of these covariates in addition to the treatment indicator in
a weighted regression model may correct this if the imbalance is relatively small. Second, in
addition to exposure, the relationship between some of the covariates and the outcome may
also be of interest. Their inclusion can provide coefficients that can estimate the direction and
magnitude of the relationship. Third, as with randomized trials, stratifying on covariates that
are highly correlated with the outcome can improve the precision of estimates. Lastly, the some
treatment effect estimators that utilize an outcomes regression model and propensity scores are
“doubly robust” in the sense that if either the propensity score model is correct or the regression
model is correct then the treatment effect estimator will be unbiased (Bang & Robins 2005).
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