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Abstract

Linear transformation models constitute a general family of parametric regression models for discrete and

continuous responses. To accommodate correlated responses, the model is extended by incorporating mixed

effects. This article presents the R package tramME, which builds on existing implementations of transformation

models (mlt and tram packages) as well as Laplace approximation and automatic differentiation (using the TMB

package), to calculate estimates and perform likelihood inference in mixed-effects transformation models. The

resulting framework can be readily applied to a wide range of regression problems with grouped data structures.

1 Introduction

Datasets with grouped observations are abundant in the applied statistical practice. Clustering, hierarchical

designs, longitudinal studies or repeated measurements can all lead to grouped data structures. The common

property of these datasets is that observations within groups, defined by one or more grouping factors, cannot

be treated as independent. In order to draw valid inference, the statistical model has to address the issue of

correlated observations. Mixed-effects models represent one of the main approaches dealing with this type of

regression problems. In this approach, the observations are assumed to be independent conditionally on a set of

random effects that aim to capture unmodeled group-level heterogeneity. The reader is referred, for example, to

the textbook by Demidenko (2013) for an exposition and examples of the usage of mixed-effects models. Several

R packages exist that implement mixed-effects models for specific types of regression problems. The two most

notable examples are nlme by Pinheiro et al. (2019) and lme4 by Bates et al. (2015) for linear, non-linear and

generalized linear mixed-effects models, respectively.

Linear transformation models aim to directly specify the conditional distribution function of an outcome

variable in a regression setting. Hothorn (2020b) proposed a fully parametric approach using a flexible monotone

increasing transformation function that is estimated from the data. The resulting general model family can be

applied to a wide range of problems with at least ordered discrete outcome variables. In fact, many of the popular

regression models can be expressed as special cases of the linear transformation model framework. Most recently,

Tian et al. (2020) reviewed the approach followed in this study and compared it to an alternative semiparametric

formulation using extensive simulations. With introducing random effects in the linear transformation model,

it becomes applicable in a very diverse set of regression problems where the observations are correlated due to

repeated measurements or grouped designs.

The structure of this article is as follows: After a brief, and somewhat technical, introduction of the method-

ology and the implementation in Section 2, Section 3 demonstrates, through a series of examples, that the

package tramME can be flexibly applied to regression models with various response types and data structures.

Finally, Section 4 discusses a few issues concerning the implementation of our model.
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2 Mixed-effects transformation models

The model class in the R package tramME is an extension of the transformation model approach described by

Hothorn et al. (2018) and implemented in the R packages mlt and tram by Hothorn (2020b) and Hothorn

(2020a), respectively.

Formally, we are interested in models that parameterize the conditional distribution function directly,

P (Y ≤ y | x,u,γ) = FZ

(
h(y;ϑ)− x>β − u>γ

)
γ ∼ Nq(0,Σ), (1)

where FZ denotes a pre-specified error distribution function (or inverse-link function) which is monotone in-

creasing and maps from the real numbers to the closed interval [0, 1]. Typically, FZ is set to the CDF of a simple

continuous distribution, hence the name “error distribution”. h(y;ϑ) is the baseline transformation function,

which is also a monotonic increasing function parameterized with the vector ϑ. x> and u> are the suitable row

vectors of fixed effects and random effects design matrices, respectively. The vector β contains the fixed effects,

while γ comprises of the stacked (possibly multiple) random effects. The distribution of the random effects is

assumed to be multivariate Gaussian with zero mean and covariance matrix Σ, which typically has a sparse

block structure.

As Table 1 shows, specific choices for the error distribution and the baseline transformation function lead

to different types of regression models. In the R package tramME, seven main model types are distinguished,

mainly based on the class of their outcome variable. Moreover, the functions SurvregME() and PolrME() allow

to specify multiple error distributions or baseline transformations and hence increasing the number of available

model types.

Table 1: Model types implemented in the tramME package. FZ denotes the error distribution and the

column h(y;ϑ) lists the basis functions the baseline transformation function utilizes.

Function Name FZ h(y;ϑ)

LmME() Mixed-effects normal linear regression Standard Gaussian Linear basis

BoxCoxME() Non-normal (Box-Cox-type) linear

mixed-effects regression

Standard Gaussian Bernstein basis

ColrME() Mixed-effects continuous outcome

logistic regression

Standard logistic Bernstein basis

CoxphME() Mixed-effects parametric Cox regression Minimum extreme value Bernstein basis

SurvregME() Mixed-effects parametric survival

models

Multiple options Multiple options

PolrME() Mixed-effects regression models for

ordinal outcomes

Multiple options Discrete basis

LehmannME() Mixed-effects Lehmann-alternative

linear regression

Maximum extreme value Bernstein basis

As the table indicates, some of the models specify their transformation functions as general smooth functions,

approximated with the use of Bernstein polynomials. The function h(y;ϑ) has to be monotonic increasing, so

that the conditional distribution function is also increasing. When using a set of order p Bernstein polynomials

for the approximation of a general function, this restriction conveniently translates to the parameter restriction

ϑi ≤ ϑi+1 for all i = 0, . . . , p− 1.

The observations are assumed to be conditionally independent, and hence the likelihood has the form

L (ϑ,β,Σ) =

∫
Rq

L(ϑ,β,Σ,γ) dγ

=

∫
Rq

n∏
i=1

Li(ϑ,β | γ)φ(γ; Σ) dγ, (2)
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where L(ϑ,β,Σ,γ) is the joint likelihood function, given the all observations, and Li(ϑ,β | γ) denotes the

individual conditional likelihood contributions. φ(γ; Σ) stands for the probability density function of the mul-

tivariate normal distribution with vector zero mean and covariance matrix Σ. This latter function can be

factorized further according to the covariance structure of the random effects.

One of the main advantages of working directly with the distribution function of the outcome is that it is

simple to introduce (random) censoring and truncation in the estimation procedure. The conditional likelihood

contributions under different types of censoring can be written as

Li(ϑ,β | γ) =



fZ(h(y;ϑ)− x>β − u>γ)h′(y;ϑ) y ∈ Ξ “exact continuous”

1− FZ(h(
¯
y;ϑ)− x>β − u>γ) y ∈ (

¯
y,∞) ∩ Ξ “right censored”

FZ(h(ȳ;ϑ)− x>β − u>γ) y ∈ (−∞, ȳ] ∩ Ξ “left censored”

FZ(h(ȳ;ϑ)− x>β − u>γ)

− FZ(h(
¯
y;ϑ)− x>β − u>γ)

y ∈ (
¯
y, ȳ] ∩ Ξ “interval censored”,

where fZ() is the density function of the error distribution, h′(y;ϑ) is the first derivative of the baseline trans-

formation function with respect to y, and Ξ denotes the sample space of Y .

The multidimensional integral in Equation (2), in general, does not have an analytical solution, but its value

can be approximated using numerical methods. The package tramME applies the Laplace approximation to this

problem, which relies on the quadratic Taylor expansion of the corresponding joint log-likelihood function.

The maximization of the logarithm of the likelihood function with respect to ϑ, β, and Σ, under a set of

suitable constraints on ϑ to make h(y;ϑ) monotone increasing, results in the maximum likelihood estimates of

the model parameters. Standard likelihood theory, utilizing the ability to evaluate the log-likelihood function,

the score function, and the Hessian, provides a basis for asymptotic inference in this family of models; see

Hothorn et al. (2018) for more details on likelihood inference in transformation models.

The maximum likelihood estimation in tramME is done using the TMB package by Kristensen et al. (2016). The

Template Model Builder (TMB) allows the user to define and estimate general, non-linear mixed effects models. It

was built on well-tested and high-performance C++ libraries, which results in a flexible yet efficient framework

for estimating mixed models with possibly complex random effects structures; see for example Brooks et al.

(2017) for performance comparisons in the context of the package glmmTMB. In tramME, TMB is used to evaluate

the integral in Equation (2), using Laplace’s method, and to calculate the derivatives of the log-likelihood

function using automatic (or algorithmic) differentiation.

3 Applications

In this section several applications of the transformation mixed models are presented, and wherever it is possible,

also compared to other existing implementations. The examples shown here are by no means intended as

complete analyses. They demonstrate how mixed-effects transformation models can be used in a broad range

of regression problems, and showcase the most important features implemented in the package tramME.

3.1 Normal linear mixed model

As a first example, we model the average reaction times to a specific task from a sleep deprivation study described

in Belenky et al. (2003). Figure 1 presents the reaction times against days of sleep deprivation for each of the

18 participants.

In this first example, we model the distribution of the average reaction time using random intercepts and

random slopes for the effects of days of sleep deprivation.

P (Reaction ≤ y | Days, αi, βi) = Φ (ϑ1 + ϑ2y − βDays− γ1i − γ2iDays) , (3)(
γ1i
γ2i

)
∼ N2

{(
0

0

)
,

(
τ21 τ12

τ12 τ22

)}
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Figure 1: Sleep deprivation study: Average reaction times to a specific task of 18 participants after several

days of sleep deprivation reported by Belenky et al. (2003).

Note that when the transformation function is assumed to be linear in the outcome variable, i.e., h(y) = ϑ1+ϑ2y,

we arrive at a re-parameterized version of the normal linear mixed effects model, and hence the results from

tramME::LmME() are directly comparable to estimates using other mixed-effects regression packages such as lme4.

Estimating the normal linear model with the tramME:

R> library("tramME")

R> sleep_lmME <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy)

R> logLik(sleep_lmME)

'log Lik.' -876 (df=6)

To make the results from lme4 comparable to the previous results, we set REML = FALSE, as the transformation

mixed model implementation only supports the maximum likelihood estimation of the normal linear model

specification.

R> library("lme4")

R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy,

+ REML = FALSE)

R> logLik(sleep_lmer)

'log Lik.' -876 (df=6)

The as.lm = TRUE option of various methods in tramME facilitates the comparisons between the transforma-

tion model parametrization and the results of a linear mixed model parametrization. Coefficient estimates and

their standard errors from the transformation model approach are

R> cbind(coef = coef(sleep_lmME, as.lm = TRUE),

+ se = sqrt(diag(vcov(sleep_lmME, as.lm = TRUE, pargroup = "fixef"))))

coef se

(Intercept) 251.4 6.63
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Days 10.5 1.50

while the results from lmer are

R> summary(sleep_lmer)$coefficients

Estimate Std. Error t value

(Intercept) 251.4 6.63 37.91

Days 10.5 1.50 6.97

Similarly, the standard deviations and correlations of the random effects, as well as the standard deviations of

the error terms are essentially the same

R> VarCorr(sleep_lmME, as.lm = TRUE) ## random effects

Grouping factor: Subject (18 levels)

Standard deviation:

(Intercept) Days

23.80 5.72

Correlations:

(Intercept)

Days 0.0813

R> sigma(sleep_lmME) ## residual SD

[1] 25.6

R> VarCorr(sleep_lmer)

Groups Name Std.Dev. Corr

Subject (Intercept) 23.78

Days 5.72 0.08

Residual 25.59

As the results show, the transformation model approach implemented by LmME() leads to the same results as

the maximum likelihood estimation of the traditional linear mixed model parametrization. The advantage using

the package tramME, as opposed to other well established implementations, is that it allows for incorporating

randomly censored outcomes. Let us assume that the device in the sleep deprivation study is only able to

measure reaction times larger than 200 ms and only in 50 ms step sizes. If we want to take this reduced

accuracy in the measurements into account, we have to deal with interval-censored observations, as ignoring the

censored nature of the outcomes could lead to biased parameter estimates.

With the following code, we create the interval-censored outcome vector using the Surv function of the

survival package by Therneau (2015).

R> library("survival")

R> ub <- ceiling(sleepstudy$Reaction / 50) * 50

R> lb <- floor(sleepstudy$Reaction / 50) * 50

R> lb[ub == 200] <- 0

R> sleepstudy$Reaction_ic <- Surv(lb, ub, type = "interval2")

R> head(sleepstudy$Reaction_ic)

[1] [200, 250] [250, 300] [250, 300] [300, 350] [350, 400] [400, 450]

Using the interval-censored outcomes in the LmME() function call will maximize the correct likelihood function.
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R> sleep_lmME2 <- LmME(Reaction_ic ~ Days + (Days | Subject), data = sleepstudy)

R> logLik(sleep_lmME2)

'log Lik.' -201 (df=6)

The value of the log-likelihood is different, because we are now calculating log-probabilities instead of log-

densities of a continuous distribution, but, despite the decreased precision of the measurements, the parameter

estimates are similar to what we got from the exactly observed outcomes.

R> cbind(coef = coef(sleep_lmME2, as.lm = TRUE),

+ se = sqrt(diag(vcov(sleep_lmME2, as.lm = TRUE, pargroup = "fixef"))))

coef se

(Intercept) 251.4 6.83

Days 10.5 1.62

R> sigma(sleep_lmME2)

[1] 28

R> VarCorr(sleep_lmME2, as.lm = TRUE)

Grouping factor: Subject (18 levels)

Standard deviation:

(Intercept) Days

22.30 5.94

Correlations:

(Intercept)

Days 0.0536

The small estimated value of the correlation coefficient between the random slope and intercept suggests

that a model with independent random effects might be more appropriate. To estimate such a model, we can

use the same notation as in lme4

R> sleep_lmME3 <- LmME(Reaction_ic ~ Days + (Days || Subject), data = sleepstudy)

R> logLik(sleep_lmME3)

'log Lik.' -201 (df=5)

Comparing the two models using a likelihood ratio test, we see no evidence against the more parsimonious model

(sleep lmME3).

R> anova(sleep_lmME2, sleep_lmME3)

Model comparison

Model 1: Reaction_ic ~ Days + (Days | Subject)

Model 2: Reaction_ic ~ Days + (Days || Subject)

Df logLik AIC BIC Chisq Chisq df Pr(>Chisq)

Model 2 5 -200 411 427

Model 1 6 -200 413 432 0.02 1 0.89

3.2 Box-Cox-type mixed-effects models

Substituting the linear baseline transformation function, h(y) = ϑ1 + ϑ2y, with a general, monotonic increasing

smooth function, we can relax the conditional normality assumption of the model discussed in Section 3.1.
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The transformation model approach proposed by Hothorn et al. (2018) uses Bernstein bases to approximate

this general increasing function in a fully parametric manner, i.e., h(y) = aBs,K+1(y)>ϑ. The resulting model

can be regarded as a version of the Box-Cox regression (Box and Cox, 1964), where the transformation of the

response is estimated simultaneously with the model parameters. It should be pointed out that, although its

approach is similar in spirit, tramME does not use the Box-Cox power transformation to approximate h(y). For

an implementation utilizing the original Box-Cox transform in the context of mixed-effects models, see the R

package boxcoxmix by Almohaimeed and Einbeck (2018).

A more flexible version of the model described in (3) will take the form

P (Reaction ≤ y | Days, αi, βi) = Φ
(
a(y)>ϑ− βDays− γ1i − γ2iDays

)
, (4)(

γ1i
γ2i

)
∼ N2

{(
0

0

)
,

(
τ21 τ12

τ12 τ22

)}
The Box-Cox-type transformation mixed model can be estimated using the BoxCoxME() function of the tramME

package.

R> sleep_bc <- BoxCoxME(Reaction ~ Days + (Days | Subject), data = sleepstudy)

R> logLik(sleep_bc)

'log Lik.' -860 (df=11)

Note that the log-likelihood of this model is higher than that of the normal linear model, because we are now

approximating the baseline transformation function flexibly, at the expense of a larger number of parameters.

Plotting the baseline transformation, h(y) = a(y)>ϑ, can be used as a tool for checking the conditional

normality assumption in the normal linear mixed model. In our example, Figure 2 reveals a slight departure

from conditional normality in the outcome variable.

In many cases, the goal of the analysis is to estimate the marginal distribution of the outcomes, i.e., inte-

grating out the random effects from the conditional model (1). In the general formulation, there is no analytical

solution for the integral, but we can use numerical methods to approximate the marginal distributions at vari-

ous values of the outcome. The following code utilizes the simulate and predict methods implemented in the

tramME package to get Monte Carlo estimates of the outcome distribution implied by the model (4).

R> ndraws <- 1000

R> nd <- expand.grid(

+ Reaction = seq(min(sleepstudy$Reaction), max(sleepstudy$Reaction), length.out = 100),

+ Days = 0:9,

+ Subject = 1)

R> re <- simulate(sleep_bc, newdata = nd, nsim = ndraws, what = "ranef", seed = 100)

R> cp <- parallel::mclapply(re, function(x) {
+ predict(sleep_bc, newdata = nd, ranef = x, type = "distribution")

+ }, mc.cores = 8)

R> cp <- array(unlist(cp), dim = c(100, 10, ndraws))

R> mp_bc <- apply(cp, c(1, 2), mean)

Figure 3 compares the conditional distributions obtained by integrating over the vector of random effects in

models (3) and (4).

3.3 Mixed-effects continuous outcome logistic regression

The increased flexibility of the Box-Cox-type model, i.e., using a general baseline transformation function instead

of a linear one, comes with the price that the coefficient estimates will not be easily interpretable as expected

changes in the mean in the conditional model. Switching to the standard logistic error distribution provides

a solution to this problem, as the parameter estimates in the resulting model can be interpreted as log-odds

ratios. This continuous outcome logistic regression model was used by Lohse et al. (2017) to analyze body mass

index (BMI) distributions.
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Figure 2: Comparison of baseline trasformations from the normal linear (LmME) and the Box-Cox-type

(BoxCoxME) mixed-effects models fitted to the sleepstudy dataset.

Manuguerra and Heller (2010) proposed a mixed-effects logistic regression model for bounded, continuous

measurements of pain levels in a randomized, double-blind, placebo-controlled trial of low-level laser therapy

for subjects with chronic neck pain presented by Chow et al. (2006). The levels of pain, measured on a visual

analog scale, and normalized between 0 and 1, are plotted in Figure 4 for each subject at the different follow-up

times.

The mixed-effects model suggested by Manuguerra and Heller (2010) parameterizes the log-odds of experi-

encing smaller pain levels as a linear function of fixed and random effects and the baseline transformation. With

the treatment group indicator, laser, and time denoting the follow-up times,

log

[
P (pain ≤ y | laser, time, αi)

P (pain > y | laser, time, αi)

]
= h(y) + βActive + β7w + β12w + β7w, Active + β12w, Active + αi

αi ∼ N (0, τ2),

where h(y) is an increasing function of the outcome. Rearranging the terms in the model above reveals that

this indeed is a mixed-effects transformation model, with the distribution function of the standard logistic

distribution (“expit” function) as FZ

P (pain ≤ y | laser, time, αi) = expit (h(y) + βActive + β7w + β12w

+ β7w,Active + β12w, Active + αi)
(5)

αi ∼ N (0, τ2)

The ColrME() function of the tramME package estimates mixed-effects continuous outcome logistic regression

models using Bernstein polynomials to approximate h(y). Applying this model to the neck pain dataset:

8



Days = 5 Days = 6 Days = 7 Days = 8 Days = 9

Days = 0 Days = 1 Days = 2 Days = 3 Days = 4

200 300 400 200 300 400 200 300 400 200 300 400 200 300 400

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Average reaction time (ms)

M
ar

gi
na

l d
is

tr
ib

ut
io

n

BoxCoxME LmME ECDF

Figure 3: Comparison of the marginal distributions implied by the normal linear(LmME) and the Box-

Cox-type (BoxCoxME) mixed-effects models fitted to the sleep deprivation study dataset. The empirical

cumulative distribution functions (ECDF) are also plotted, conditionally on the days of sleep deprivation.
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Figure 4: Neck pain dataset: Trajectories of pain levels measured on a visual analog scale (VAS) in the

active treatment and placebo-controlled groups reported in Chow et al. (2006).
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R> neck_tr <- ColrME(vas ~ laser * time + (1 | id), data = neck_pain,

+ bounds = c(0, 1), support = c(0, 1))

Notice that we explicitly set the bounds and the support of the outcome variable to [0, 1] because the pain levels

are measured on a bounded scale.

The ordinalCont package by Manuguerra and Heller (2019) implements an alternative formulation of the

model (5) based on the method described in Manuguerra et al. (2017). In their approach, the baseline transfor-

mation is parameterized using B-splines and the estimation is carried out in a penalized likelihood framework.

R> library("ordinalCont")

R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = neck_pain, scale = c(0, 1))

Figure 5 compares the results of the mixed-effects transformation model approach to the estimates obtained

using the ordinalCont package. Because the two models are not exactly the same, we see some differences in

the parameter estimates as well as in the fitted baseline transformation functions, but the two model fits are

reasonably close to each other.
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tramME
ordinalCont

−4 −2 0 2 4 6

Log−odds ratios

β12w, Active

β7w, Active

β12w

β7w

βActive

Figure 5: Left: Baseline transformations in continuous outcome logistic regressions estimated with the

tramME and ordinalCont packages on the neck pain dataset. The solid lines denote the point estimates

and the areas indicate the 95% point-wise confidence intervals. Right: Coefficient estimates from tramME

and ordinalCont packages and their 95% Wald confidence intervals.

The odds ratio estimates of the model fitted by ColrME(),

R> exp(coef(neck_tr))

laser1 time2 time3 laser1:time2 laser1:time3

0.0961 0.5200 0.8125 140.2076 42.4076

as well as the results from the ordinalCont package, suggest that there is an imbalance in the sample at baseline,

i.e., the odds of experiencing less pain in the active treatment group is only about 10% that of in the control

group for any pain levels. Based on the estimates, the treatment has strong significant effect, especially at the

seven-week follow-up, but seems to level off after 12 weeks.

If we want to compare the marginal distributions in the treatment and control groups directly, we have to

average over the distribution of the random effects. Because in this example we only have a random intercept,
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we have to evaluate a one-dimensional integral. We could use the same Monte Carlo method as we did in

Section 3.2, or we can apply the adaptive quadrature method implemented in the stats package of R. The

example below uses this approach to demonstrate the multiple options the analyst has in dealing with such

problems.

R> jointCDF <- function(re, nd, mod) {
+ nd <- nd[rep(1, length(re)), ]

+ nd$id <- seq(nrow(nd)) ## to take vector-valued REs

+ pr <- predict(mod, newdata = nd, ranef = re, type = "distribution") *

+ dnorm(re, 0, sd = sqrt(varcov(mod)[[1]][1, 1]))

+ c(pr)

+ }
R> marginalCDF <- function(nd, mod) {
+ nd$cdf <- integrate(jointCDF, lower = -Inf, upper = Inf, nd = nd, mod = mod)$value

+ nd

+ }
R> nd <- expand.grid(vas = seq(0, 1, length.out = 100),

+ time = unique(neck_pain$time),

+ laser = unique(neck_pain$laser))

R> mp_colr <- parallel::mclapply(split(nd, seq(nrow(nd))),

+ marginalCDF, mod = neck_tr, mc.cores = 8)

R> mp_colr <- do.call("rbind", mp_colr)

Figure 6 compares the marginal distributions at different time points, and confirms our previous conclusions on

baseline imbalance and treatment effect dynamics.
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Figure 6: Comparison of marginal distributions, calculated from a mixed-effects continuous outcome lo-

gistic regression model, in the treatment (Active) and control (Placebo) groups at baseline and the two

follow-up times. The step functions represent the empirical cumulative distribution functions of the specific

groups.

3.4 Mixed-effects transformation models for time-to-event outcomes

Consider the example dataset eortc in the coxme package by Therneau (2019). The simulated dataset emulates

the structure of the outcomes of a breast cancer trial by the European Organization for Research and Treatment

of Cancer, and consists of 2323, possibly right censored, data points from 37 enrolling centers. We define
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a proportional hazards mixed-effects model with random center (i = 1, . . . , 37) and treatment (trt) effects

(nested within centers and indexed by j = 0, 1).

P
(
Y ≤ y | trt, αi, βj(i)

)
= 1− exp

(
− exp

(
h(y) + βtrt + αi + βj(i)

))
(6)

αi ∼ N (0, τ21 ), βj(i) ∼ N (0, τ22 )

This model corresponds to a mixed-effects transformation model with the minimum extreme value distribution

as the error distribution. Treating the baseline transformation as a general smooth function, approximated

using Bernstein polynomials, we get the fully parametric version of the Cox proportional hazards model with

normally distributed random effects.

We can fit this model with the CoxphME() function of tramME.

R> data("eortc", package = "coxme")

R> eortc$trt <- factor(eortc$trt, levels = c(0, 1))

R> eortc_cp <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,

+ log_first = TRUE, order = 10)

The nested random effects structure is defined with the / operator. The log first = TRUE option casts the

outcome variable to the log-scale before defining the Bernstein bases, which usually improves the model fit when

dealing with skewed conditional distributions, while we explicitly set the order of the Bernstein polynomials with

order = 10. The confidence interval for the treatment effect (transformed to the hazard ratio scale) suggests

evidence for the effectiveness of the treatment

R> exp(confint(eortc_cp, parm = "trt1", estimate = TRUE))

lwr upr est

trt1 1.8 2.51 2.12

while the profile intervals of the random effects standard deviations indicate similar magnitude of center-level

and treatment-level (within center) variabilities.

R> exp(confint(eortc_cp, pargroup = "ranef", type = "profile", estimate = TRUE,

+ ncpus = 2, parallel = "multicore"))

lwr upr est

trt:center|(Intercept) 0.0841 0.338 0.208

center|(Intercept) 0.0796 0.384 0.254

The transformation model framework by Hothorn (2020a) allows for stratification, i.e., specifying separate

transformation functions for different groups defined by a stratification factor. To check the appropriateness of

the proportional hazards assumption between treatment and control groups visually, we re-estimate the model

stratifying for the treatment indicator, i.e., fitting baseline cumulative hazards for the treatment and control

groups separately, and inspect whether the two baseline transformation functions, which are the log-cumulative

baseline hazards when the error distribution is the minimum extreme value distribution, are parallel.

R> eortc_cp2 <- CoxphME(Surv(y, uncens) | 0 + trt ~ 0 + (1 | center/trt), data = eortc,

+ log_first = TRUE, order = 10)

R> tr <- trafo(eortc_cp2, confidence = "interval")

Figure 7 plots the stratified transformation functions against log-time. The two curves are very close to parallel,

which indicates that the treatment effect is constant over time, i.e., the proportionality assumption is appropriate

in the original model specification.

In addition to proportionality, Figure 7 reveals another important aspect of the data generating process: The

fact that the baseline log-cumulative hazards are linear in log-time suggests that the conditional distributions

are close to the Weibull distribution, i.e., we can substitute the general baseline transformation function with
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Figure 7: Comparison of baseline transfromation functions in treatment and control groups, estimated

using a stratified parametric mixed-effects Cox proportional hazards model on the eortc dataset.

h(y) = ϑ1 + ϑ2 log(y). Flipping the signs of the fixed and random effects terms of (6) and substituting the

log-linear function to the baseline transfromation, we get the model

P
(
Y ≤ y | trt, αi, βj(i)

)
= 1− exp

(
− exp

(
ϑ1 + ϑ2 log(y)− βtrt − αi − βj(i)

))
αi ∼ N (0, τ21 ), βj(i) ∼ N (0, τ22 ).

The SurvregME() function of the tramME package implements a variety of parametric mixed-effects models

that represent specific choices of the error distribution and the baseline transformation function in the general

formulation of Equation (1). There are several other R packages available for estimating parametric survival

models with mixed effects, such as parfm by Munda et al. (2012) and frailtypack by Rondeau et al. (2012),

but they typically do not allow for nested random-effects structures when assuming (log-)normally distributed

frailty terms.

Fitting a mixed-effects Weibull model to the dataset eortc

R> eortc_w <- SurvregME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,

+ dist = "weibull")

Comparing the parameter estimates of the Cox proportional hazards model to those from the mixed-effects

Weibull model,

R> ## --- CoxphME

R> c(coef = coef(eortc_cp), se = sqrt(diag(vcov(eortc_cp, pargroup = "shift"))))

coef.trt1 se.trt1

13

https://CRAN.R-project.org/package=parfm
https://CRAN.R-project.org/package=frailtypack


0.7535 0.0852

R> VarCorr(eortc_cp)

Grouping factor: trt:center (74 levels)

Standard deviation:

(Intercept)

0.208

Grouping factor: center (37 levels)

Standard deviation:

(Intercept)

0.254

R> ## --- SurvregME

R> c(coef = -coef(eortc_w), se = sqrt(diag(vcov(eortc_w, pargroup = "shift"))))

coef.trt1 se.trt1

0.7531 0.0851

R> VarCorr(eortc_w)

Grouping factor: trt:center (74 levels)

Standard deviation:

(Intercept)

0.208

Grouping factor: center (37 levels)

Standard deviation:

(Intercept)

0.255

as well as their log-likelihood values

R> c(logLik(eortc_cp), logLik(eortc_w))

[1] -13027 -13032

confirms our suspicion that the dataset was indeed simulated from a conditional Weibull model.

Finally, we can compare the results from tramME to parameters estimated with the R package coxme.

R> library("coxme")

R> eortc_cm <- coxme(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc)

R> summary(eortc_cm)

Cox mixed-effects model fit by maximum likelihood

Data: eortc

events, n = 1463, 2323

Iterations= 10 54

NULL Integrated Fitted

Log-likelihood -10639 -10518 -10464

Chisq df p AIC BIC

Integrated loglik 242 3.0 0 236 220.4

Penalized loglik 349 39.3 0 270 62.6
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Model: Surv(y, uncens) ~ trt + (1 | center/trt)

Fixed coefficients

coef exp(coef) se(coef) z p

trt1 0.742 2.1 0.0827 8.97 0

Random effects

Group Variable Std Dev Variance

center/trt (Intercept) 0.2045 0.0418

center (Intercept) 0.2627 0.0690

This package follows a different approach to estimate a mixed-effects Cox model by leaving the baseline hazards

unspecified and maximizing the integrated partial likelihood. As a result, the parameter estimates are slightly

different from the ones we got using the CoxphME() function, but the results are comparable and the conclusions

are identical, nevertheless.

3.5 Mixed-effects transformation models for discrete ordinal outcomes

Our last example demonstrates how the mixed-effects transformation framework can be used in modeling corre-

lated discrete ordinal outcomes. As an example, we take the soup tasting dataset by Christensen et al. (2011).

The dataset contains 1847 observations from 185 respondents in a soup tasting experiment. The subjects were

familiarized with a reference product prior the experiment, and, during the experiment, were asked to distinguish

between samples from the reference product and test product using a six-level ordinal scale indicating their level

of confidence. The scale ranges from “reference, sure” (sureness = 1) to “not reference, sure” (sureness = 6).

Figure 8 presents the proportions of response categories for the test and reference samples, for respondent groups

defined by how often they consume soup.

>1/week 1−4/month <1/month

Reference Test Reference Test Reference Test

0.00

0.25

0.50

0.75

1.00

Product

P
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Sureness 1 2 3 4 5 6

Figure 8: Data from the soup tasting study reported by Christensen et al. (2011): Proportions of responses

of sureness levels (six levels, ranging from “reference, sure” to “not reference, sure”) after tasting test and

reference products. The data points are grouped by how often the respondents consume soup (more than

once a week, one to four times a month, less than once a month).
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Let us assume that we are interested in comparing the distributions of sureness ratings for reference products

and test products, while taking the repeated nature of the design into account. Moreover, in doing so, we also

want to control for how often the respondents usually consume soup (denoted by the covariate freq). With

k = 1 . . . 5, indicating the sureness levels except the last one, i = 1 . . . , 185 indexing the respondents, and j = 0, 1

indexing the reference and test products (covariate prod), respectively, the regression model we estimate can be

written as

P
(
sureness ≤ k | prod, freq, αi, βj(i)

)
= Φ

(
ϑk − βtest − β1-4/month − β<1/month − αi − βj(i)

)
(7)

αi ∼ N (0, τ21 ), βj(i) ∼ N (0, τ22 )

The PolrME() function of the tramME package estimates models for ordered discrete outcomes. Depending

on the choice of the error distribution, the user can fit proportional odds (logistic distribution), ordinal probit

(standard normal distribution), proportional hazards (minimum extreme value distribution), or cumulative

maximum extreme value models. In our example, we set method = ’probit’ to estimate the probit model,

R> soup_pr <- PolrME(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD),

+ data = soup, method = "probit")

R> logLik(soup_pr)

'log Lik.' -2666 (df=10)

The R package ordinal by Christensen (2019) also implements mixed-effects regression models for ordered

discrete outcomes. As a cross-check, we can re-estimate the same model with the function clmm(),

R> library("ordinal")

R> soup_or <- clmm(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD), data = soup,

+ link = "probit")

R> logLik(soup_or)

'log Lik.' -2666 (df=10)

Based on the likelihood values and the parameter estimates,

R> max(abs(coef(soup_or) - coef(soup_pr, with_baseline = TRUE)))

[1] 1.76e-05

the results are essentially the same.

We can introduce non-proportional effects in the transformation model framework by stratifying on a co-

variate. In our example, we might want to extend the model to allow for different effect sizes of the soup

consumption frequency covariate, depending on the level of the outcome variable. Rewriting model (7),

P
(
sureness ≤ k | prod, freq, αi, βj(i)

)
= Φ

(
ϑk − βtest − β1-4/month,k − β<1/month,k − αi − βj(i)

)
αi ∼ N (0, τ21 ), βj(i) ∼ N (0, τ22 )

and estimating it with tramME by stratifying for the soup frequency factor

R> soup_pr2 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD),

+ data = soup, method = "probit")

R> logLik(soup_pr2)

'log Lik.' -2655 (df=18)

The likelihood ratio test comparing the two specifications suggests some evidence that the extended, partially

proportional model fits the data better.

R> anova(soup_pr, soup_pr2)
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Model comparison

Model 1: SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD)

Model 2: SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD)

Df logLik AIC BIC Chisq Chisq df Pr(>Chisq)

Model 1 10 -2666 5352 5408

Model 2 18 -2655 5347 5446 21.9 8 0.0051 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4 Discussion

Building the implementation of mixed-effects transformation models on the package TMB leads to significant

efficiency gains in the computationally intensive steps of the maximum likelihood estimation. This computational

efficiency is partly due to the use of Laplace approximation to integrate over the vector of random effects.

However, several sources point out that Laplace’s method can lead to biased estimates in some distributional

settings. Pinheiro and Chao (2006) provide detailed numerical comparisons of the Laplacian approximation to

adaptive Gaussian quadrature algorithms in the context of multilevel generalized models. Joe (2008) evaluates

the method in the case of discrete outcome mixed-effects models, and concludes that the inaccuracy increases

with the amount of discreteness of the response variable and decreases as the cluster sizes increase.

It is worth mentioning that the conditional approach of modeling the distribution of the response, which is the

basis of the transformation models implemented in the tramME package, is not the only way one could approach

the problem of correlated outcomes in regression settings. The main alternative to a conditional (mixed-effects)

modeling approach is a marginal model that parameterizes the marginal distribution of the outcome and treats

the covariance structure as nuisance parameters. Generalized estimating equations (GEE, Hardin and Hilbe,

2013) models represent prominent examples of such an approach. Proponents of marginal models point out

that, in a conditional model, the fixed effects parameter estimates cannot be interpreted as population averages,

which is usually of primary interest in a regression analysis. Lindsey and Lambert (1998) emphasize that

marginal parameter estimates from longitudinal studies can only be interpreted as population averages when

the participants are representative to their populations, which is usually not the case. Moreover, they argue

that defining models based on marginal distributions very often leads to complicated and implausible conditional

distributions, whereas conditional models can more easily express physiologically plausible mechanisms on the

level of the individual. Lee and Nelder (2004) argue that conditional models are more fundamental as they

allow for both marginal and conditional inferences, which is not true in the case of marginal models. As we

demonstrated in Sections 3.2 and 3.3, the marginal distributions implied by the conditional transformation

model can be easily approximated using numerical techniques.

The tramME package, introduced in this article, extends the available options for modeling grouped data

structures with mixed-effects regressions in several ways: Through its dense code base, tramME provides an

unified and efficient estimation framework for a broad range of regression models. Examples in Section 3

demonstrate that, using this single package, several very specific regression problems can be addressed. Relying

only on a limited number of packages, in turn, decreases the likelihood of errors in the statistical analysis. As the

examples showed, the modular structure of our approach naturally leads to extensions of existing models (such

as accounting for censoring or introducing nested or crossed random effects structures) that would otherwise

require a lot of effort to re-implement from scratch. Moreover, the underlying theory of linear transformation

models provides a flexible basis for the implementation of the package and for its future extensions.
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Nielsen, Hans J. Skaug, Martin Mächler, and Benjamin M. Bolker. glmmTMB balances speed and flexi-

bility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2):378–400,

2017. doi:10.32614/RJ-2017-066.

Roberta T. Chow, Gillian Z. Heller, and Les Barnsley. The effect of 300 mW, 830 nm laser on

chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain, 124(1-2):201–210, 2006.

doi:10.1016/j.pain.2006.05.018.

Rune Haubo Bojesen Christensen. ordinal—Regression Models for Ordinal Data, 2019. URL http://www.cran.

r-project.org/package=ordinal/. R package version 2019.4-25.

Rune Haubo Bojesen Christensen, Graham Cleaver, and Per Bruun Brockhoff. Statistical and Thurstonian

models for the A-not A protocol with and without sureness. Food Quality and Preference, 22(6):542–549,

2011. doi:10.1016/j.foodqual.2011.03.003.

Eugene Demidenko. Mixed models: theory and applications with R. Wiley series in probability and statistics.

Wiley, second edition, 2013. doi:10.1002/9781118651537.

James W. Hardin and Joseph M. Hilbe. Generalized estimating equations. CRC Press, second edition, 2013.

doi:10.1201/b13880.

Torsten Hothorn. Transformation Models: The tram Package, 2020a. URL https://CRAN.R-project.org/

package=tram. R package vignette version 0.3-2.

Torsten Hothorn. Most likely transformations: The mlt package. Journal of Statistical Software, 92(1):1–68,

2020b. doi:10.18637/jss.v092.i01.
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