
Performing trade costs analysis with the tradeCosts package

Aaron Schwartz and Luyi Zhao

June 25, 2007

Abstract

For those who frequently engage in trading securities in financial markets, trade costs cannot be
overlooked. Without an understanding of the costs incurred during trading returns can never reach
their full potential. The tradeCosts package provides an easy-use to use set of tools for analyzing trade
costs by generating automated summaries and PDF reports of trade costs from raw trading data. The
summaries and reports generated allow a user to quickly understand how far their trades executed were
from a user-specified benchmark price.

1 Introduction

For institutions and individuals that frequently trade securities in financial markets trade costs are an
important expense to be considered. A money manager ignoring trade costs can hinder the performance of a
portfolio by not understanding the costs of trades being made. We define trading costs in our package based
on the work of Kissell and Glantz’s Optimal Trading Strategies [1]. As described in their work, trade costs
can be thought of to be composed of several distinct elements: commission, fees, spreads, price appreciation,
market impact, timing risk, and opportunity cost. Currently, however, the package focuses solely on slippage,
which we refer to in this release of the package as cost, as an ex-post measurement of the quality of executions
relative to a benchmark price.

We rank trades by percent cost, which we define in more detail as:

% cost = 100 ∗ cost
market value of executed shares

,

where
market value of executed shares = execution quantity ∗ execution price,

and
cost = side adjustment ∗ execution quantity ∗ (execution price− benchmark price).

Since we wish for the market value of executed shares to be unsigned, we assume that execution quantity
is always positive regardless of the trade’s side. The side adjustment variable is either or 1 or −1 and serves
to adjust the sign of cost depending on the side of the trade. In the tradeCosts package, positive cost
is considered bad while negative cost is good (Example: a negative percent cost on a buy order indicates
that the security was purchased for less than the benchmark price). Thus for buy and cover orders side
adjustment is 1, and for sell and short orders side adjustment is just −1. Also, total percent costs over a
certain time period or security are calculated as the market value weighted average of individual trades.

Having the ability to quickly and automatically generate reports that provide information about how
far trades were being executed from a benchmark price for a certain group of trades can yield valuable
information for those trying to improve their returns. These reports and summaries can help users gain a
big picture view of the trade costs for a group of trades and discover specific trades, time periods, or specific
securities with unusually high or low trade costs. The package operates through a user interface function,
analyze.trade.costs which displays summaries of the input trade data and/or generates PDF summaries.

1

2 Calculating Cost: Examples

We now go through simple examples of calculating slippage, or as we refer to it in this release, cost, for
individual trades, a period of time, and a security.

2.1 Individual Trades

First, we examine the process of calculating cost and percent cost for individual trades. Suppose for
March, 14 2007 security FOO had a volume weighted average price (VWAP) of $3.13 and that on that day
two shares of FOO were brought at the price of $3.15. The price that we actually bought the securities at,
$3.15, is referred to as the execution price, and the VWAP will be the benchmark price for this case. The
number of shares we bought, two, is referred to as the execution quantity. Also, as noted in the previous
section, since this is a buy order the side adjustment factor for this order should be 1. According to our
formula introduced in the introduction, we then calculate cost as:

cost = side adjustment ∗ execution quantity ∗ (execution price− benchmark price)
cost = 1 ∗ 2 ∗ (3.15− 3.13)
cost = $0.04.

Percent cost can then be easily calculated as:

% cost = 100 ∗ cost
market value of executed shares

% cost = 100 ∗ cost
execution quantity ∗ (execution price)

% cost = 100 ∗ 0.04
2 ∗ 3.15

% cost = 0.63%

Notice that both percent cost and cost are positive which indicate that relative to the benchmark price,
the trade described yielded a loss for whoever executed the trade. If FOO had been sold at $3.13, then our
calculations above would have yielded a cost of −$0.04 and a percent cost of −0.63%. The negative percent
cost and cost would have indicated that the transaction, relative to the VWAP benchmark price, was a good
trade for whoever bought the two shares of FOO.

2.2 Security

In addition to calculating the cost of an individual trade we can also examine the total trading cost of a
security. For example, suppose we have three trades of FOO stock, the details of which are summarized in
the table below:

2

Period Security Name Side Execution Price Execution Quantity VWAP
2/19/2007 FOO buy $2.23 5 $2.18
3/14/2007 FOO buy $3.15 2 $3.13
4/4/2007 FOO sell $3.51 5 $3.62

4/16/2007 FOO short $4.15 4 $4.28

In order to calculate the total cost of the security FOO we simply sum up the costs of each individual
trade:

cost =
∑

(side adjustment ∗ execution quantity ∗ (execution price− benchmark price))

cost = 1 ∗ 5 ∗ (2.23− 2.18) + 1 ∗ 2 ∗ (3.15− 3.13) +−1 ∗ 5 ∗ (3.51− 3.62) +−1 ∗ 4 ∗ (4.15− 4.28)
cost = 1.36

To obtain the total percent cost we divide the total cost by the total market value of all the executions
as shown below:

% cost = 100 ∗ total∑
market value of executed shares

% cost = 100 ∗ 1.36
5 ∗ 2.23 + 2 ∗ 3.15 + 5 ∗ 3.51 + 4 ∗ 4.15

% cost = 100 ∗ 1.36
5 ∗ 2.23 + 2 ∗ 3.15 + 5 ∗ 3.51 + 4 ∗ 4.15

% cost = 2.64%

2.3 Period

Similarly, the total cost and percent cost can be found for a certain period of time. Consider the table of
trades below:

Period Security Name Side Execution Price Execution Quantity VWAP
3/14/2007 FOO buy $3.15 2 $3.13
3/14/2007 BAR cover $21.71 5 $22.00
3/14/2007 MOR sell $14.51 4 $14.28

Now instead of summing over the trades for a security we group the trades by period, in this case
3/14/2007, and find the total cost of the trades for 3/14/2007:

cost =
∑

(side adjustment ∗ execution quantity ∗ (execution price− benchmark price))

cost = 1 ∗ 2 ∗ (3.15− 3.13) + 1 ∗ 5 ∗ (21.71− 22.00) +−1 ∗ 4 ∗ (14.51− 14.28)
cost = −2.33

Like before, dividing by the sum of the market values of the executed trades yields the percent cost:

3

% cost = 100 ∗ total∑
market value of executed shares

% cost = 100 ∗ 1.36
5 ∗ 2.23 + 2 ∗ 3.15 + 5 ∗ 3.51 + 4 ∗ 4.15

% cost = 2.64%

3 Trade Costs Analysis: An Example

Here we step through a trade costs analysis using the top-level function analyze.trade.costs. After
understanding the required data, we explain the options available in analyze.trade.costs, call the function,
and examine the summary output.

First, we will introduce the raw data sets included in this package: trade, a data.frame of trading
data; dynamic, a data.frame of dynamic securities data; and static, a data.frame of static securities
data. Function analyze.trade.costs takes in the trade, dynamic descriptive, and static descriptive data
in separate data.frames. trade includes the IDs of the securities, the time period, side, execution quantity,
the execution price:

> data(trade.mar.2007)

> head(trade.mar.2007, n = 1)

period id side exec.qty exec.price

5 2007-03-01 03818830 X 60600 1.6

dynamic is a data.frame that represents the dynamic descriptive data and includes the IDs of the
securities, the time period, and a benchmark price:

> data(dynamic.mar.2007)

> head(trade.mar.2007, n = 1)

period id side exec.qty exec.price

5 2007-03-01 03818830 X 60600 1.6

Finally, we have the static, the static descriptive data, which has the IDs and symbols (an alternative
identification from ID) of the securities:

> data(static.mar.2007)

> head(static.mar.2007, n = 1)

id symbol name

XSNX 98385L10 XSNX Xsunx Inc

Once the data is loaded with the correct columns, it is time to call analyze.trade.costs This user-level
function returns either a text summary generated in the R environment or a PDF report. A tradeCost-
sResults object is also returned and is explained below in section 4. Below we show the command to
use analyze.trade.costs to generate a text summary in R of the trading, static descriptive, and dynamic
descriptive data included in this package:

> analyze.trade.costs(trade.mar.2007, dynamic.mar.2007, static.mar.2007, out.fmt = "text")

Trade Cost Analysis

Summary Statistics

4

Total Market Value: 54,109,328

Total Percent Cost: 0.08

Max Percent Cost: 3.72

Min Percent Cost: -4.03

First Period: 2007-03-01

Last Period: 2007-03-30

Best and worst ID' s over all periods

id symbol exec.qty exec.mkt.val percent.cost cost

1 04743910 ACAP 17,800 56,883 -1.20 -682

2 75007710 IMAX 11,600 204,775 -0.82 -1,685

3 83215410 KEYN 18,600 286,637 -0.72 -2,077

4 45245E10 DCO 17,600 90,295 -0.63 -566

5 76073710 ISSC 16,300 191,043 -0.56 -1,069

261 98157910 NANO 101,734 414,787 0.78 3,227

262 39152310 DVW 19,100 255,806 0.89 2,280

263 00912830 AIXD 400 9,539 1.58 151

264 68658810 WOLF 26,400 256,069 2.65 6,788

265 05714910 BUD 2,400 58,270 3.72 2,170

Best and worst periods over all ID' s
period exec.qty exec.mkt.val percent.cost cost

1 2007-03-01 319,200 1,605,346 -0.42 -6,669

2 2007-03-28 119,401 971,911 -0.08 -750

3 2007-03-22 354,361 4,117,428 -0.05 -2,183

4 2007-03-13 374,622 3,651,345 0.05 1,758

5 2007-03-02 741,100 5,872,369 0.06 3,280

12 2007-03-21 221,489 2,838,467 0.10 2,718

13 2007-03-23 501,588 4,682,846 0.13 6,285

14 2007-03-05 822,195 6,756,640 0.14 9,336

15 2007-03-15 296,574 3,368,101 0.33 11,081

16 2007-03-29 56,322 396,060 1.11 4,388

Best and Worst trades

id symbol period side exec.qty exec.mkt.val percent.cost cost

1 31659U30 FICC 2007-03-13 S 1900 4593 -4.0 -185

2 03818830 ADSX 2007-03-01 X 60600 97142 -1.7 -1615

3 88362320 KOOL 2007-03-01 X 31400 94385 -1.3 -1235

4 04743910 AGIX 2007-03-19 C 17800 56883 -1.2 -682

5 75007710 RACK 2007-03-22 C 9000 157736 -1.1 -1694

430 00912830 AIRM 2007-03-09 S 400 9539 1.6 151

431 63007710 NANO 2007-03-29 X 13800 98128 2.6 2574

432 68658810 OHB 2007-03-15 X 26400 256069 2.7 6788

433 98157910 WRSP 2007-03-29 X 12500 47244 2.8 1309

434 05714910 BKR 2007-03-05 B 2400 58270 3.7 2170

NA REPORT

count

side 8

base.price 0

benchmark.price 2

exec.qty 0

5

Notice that in addition to inputting the three data frames of raw data, the parameter out.fmt = "text"
specifies that we want a text summary to be generated. The text output above generates five distinct tables
in the summary output. As you can see above, the first table includes summary information of the trade
costs analysis for the entire data set. The second, third, and fourth tables show the best and worst trades
grouped by id, time period, and individual trades. The final table is a report on the Ca’s found in the data
that might be of interest to the user.

In addition, we can run the same function without inputting static descriptive data. This is useful in
instances where alternative identifications such as ticker symbols are not needed or not readily available. We
simply run the command without static.mar.2007:

> analyze.trade.costs(trade.mar.2007, dynamic.mar.2007, out.fmt = "text")

Trade Cost Analysis

Summary Statistics

Total Market Value: 54,109,328

Total Percent Cost: 0.08

Max Percent Cost: 3.72

Min Percent Cost: -4.03

First Period: 2007-03-01

Last Period: 2007-03-30

Best and worst ID' s over all periods

id exec.qty exec.mkt.val percent.cost cost

1 04743910 17,800 56,883 -1.20 -682

2 75007710 11,600 204,775 -0.82 -1,685

3 83215410 18,600 286,637 -0.72 -2,077

4 45245E10 17,600 90,295 -0.63 -566

5 76073710 16,300 191,043 -0.56 -1,069

261 98157910 101,734 414,787 0.78 3,227

262 39152310 19,100 255,806 0.89 2,280

263 00912830 400 9,539 1.58 151

264 68658810 26,400 256,069 2.65 6,788

265 05714910 2,400 58,270 3.72 2,170

Best and worst periods over all ID' s
period exec.qty exec.mkt.val percent.cost cost

1 2007-03-01 319,200 1,605,346 -0.42 -6,669

2 2007-03-28 119,401 971,911 -0.08 -750

3 2007-03-22 354,361 4,117,428 -0.05 -2,183

4 2007-03-13 374,622 3,651,345 0.05 1,758

5 2007-03-02 741,100 5,872,369 0.06 3,280

12 2007-03-21 221,489 2,838,467 0.10 2,718

13 2007-03-23 501,588 4,682,846 0.13 6,285

14 2007-03-05 822,195 6,756,640 0.14 9,336

15 2007-03-15 296,574 3,368,101 0.33 11,081

16 2007-03-29 56,322 396,060 1.11 4,388

Best and Worst trades

id period side exec.qty exec.mkt.val percent.cost cost

1 31659U30 2007-03-13 S 1900 4593 -4.0 -185

2 03818830 2007-03-01 X 60600 97142 -1.7 -1615

6

3 88362320 2007-03-01 X 31400 94385 -1.3 -1235

4 04743910 2007-03-19 C 17800 56883 -1.2 -682

5 75007710 2007-03-22 C 9000 157736 -1.1 -1694

430 00912830 2007-03-09 S 400 9539 1.6 151

431 63007710 2007-03-29 X 13800 98128 2.6 2574

432 68658810 2007-03-15 X 26400 256069 2.7 6788

433 98157910 2007-03-29 X 12500 47244 2.8 1309

434 05714910 2007-03-05 B 2400 58270 3.7 2170

NA REPORT

count

side 8

base.price 0

benchmark.price 2

exec.qty 0

As you can see above the same tables are generated with the exception that there is no field for symbol
in the tables.

PDF reports are also easily generated using the analyze.trade.costs function. The reports contain the
same tables and information as the text summaries in a convenient PDF format. The reports are available in
both normal and verbose versions and can be generated by simply changing the out.fmt parameter. Also,
reports can simply be displayed or displayed and saved to a file path specified by the parameter pdf.file.
For example, the command:

analyze.trade.costs(trade.mar.2007, dynamic.mar.2007, static.mar.2007, out.fmt = "pdf")

would generate and display a normal PDF report of the raw data included in the package while the following
line of code:

analyze.trade.costs(trade.mar.2007, dynamic.mar.2007, static.mar.2007, out.fmt = "pdf-verbose")

would generate and display a verbose version of the report and save the PDF report to the file path specified
by pdf.file. Again, as with the text summaries, static descriptive data is still an optional parameter.
Section 4.1 will explain in more detail the usage of analyze.trade.costs and the requirements for the raw
data input.

4 Detailed overview of tradeCosts package

This section provides overviews of the key components of the tradeCosts package. Specifically, it offers de-
tailed descriptions of the function analyze.trade.costs and classes tradeCosts and tradeCostsResults.

4.1 User Interface: analyze.trade.costs

To simplify usage of this package a user-level function in the package, analyze.trade.costs, was devel-
oped. analyze.trade.costs allows users to input their raw data and specify if they wish to simply display
a summary of their trade costs in the R environment and/or generate a verbose or normal PDF report on
their trade costs data. The parameters are shown in the function signature below:

function (trade, dynamic, static = NULL, benchmark.price = "vwap",
num.trades = 5, analysis.title = "Trade Cost Analysis", out.fmt = "pdf",
pdf.file = NULL)

The parameters are explained in more detail below:

7

� trade A data.frame of trading data with the following columns required:

– id. the ID of the security being traded.

– period. the time period when the trade was executed.

– side. theanalyze.trades.costs side of the trade made. Sides should be indicated by the
characters B,S, X, and C for buy, sell, short, and cover respectively.

– exec.price. the execution price of the trade.

� dynamic. A data.frame of dynamic data on securities with the following columns required:

– id. the ID of the security being traded.

– period. the time period when the trade was executed.

– vwap. the volume weighted average price (VWAP).

� static. A data.frame of static data on securities. By default this slot is NULL. Although the user
can specify a data.frame for this slot, it is not necessary for the user to supply static descriptive
data. At this stage of the tradeCosts package’s development, the only data that would be used from
static.desc is symbol, the symbol of the security being traded (an alternate identification from ID).

� benchmark.price. A character specifying the name of the column of the benchmark price.

� num.trades. A number specifying the top num.trades best and worst trades, periods, and securities
to be displayed in the text summary and/or PDF reports. If num.trades is 1, the best and worst trade
will be displayed for each category.

� analysis.title. The character name of the analysis. By default it is set as "Trade Cost Analysis
1.0".

� out.fmt. A character specifying the report type to be generated. Input "pdf" for a normal PDF
report, "pdf-verbose" for a verbose PDF report, or "text" for a text summary of the data displayed
in the R console.

� pdf.file. A character path to the file you want the PDF report to be saved too. If a PDF report
was not selected as the output type then this argument is ignored. By default, pdf.file is set as NULL
- this causes the PDF report to be saved in a temporary directory in R. This temporary directory is
also where the all the compiling of Sweave files and LATEX files are done.

Function analyze.trades.costs works by creating a tradeCosts and tradeCostsResults object from
the input data. The two classes are explained in more detail in the section 4.2. analyze.trades.costs
generates its PDF reports by using package Sweave to generate tex files to be compiled from template files
found in /inst/template/. Detailed examples of the use of this function were given above in section 3.

4.2 tradeCosts Class

The basic structure of the tradeCosts package consists of two classes, tradeCosts and tradeCostsResults.
Class tradeCosts has slots to take in the data required for the trade costs analysis. To begin an analysis
of trade costs, an object of tradeCosts class with the necessary data in its slots is created. The slots are
listed and explained in detail below:

� name. A string of the name of this trade costs analysis.

� trade.data. A data.frame of trade data with the following columns required:

– id. the ID of the security being traded.

8

– period. the time period when the trade was executed.

– side. theanalyze.trades.costs side of the trade made. Sides should be indicated by the
characters ’B’,’S’, ’X’, and ’C’ for buy, sell, short, and cover respectively.

– exec.price. the execution price of the trade.

� dynamic.desc. A data.frame of dynamic data on securities with the following columns required:

– id. the ID of the security being traded.

– period. the time period when the trade was executed.

– vwap. the volume weighted average price (VWAP).

� static.desc. A data.frame of static data on securities.Although the user can specify a data.frame
for this slot, data from static.desc is not necessary for analysis to proceed.

The tradeCosts also has a method, analyzeData, which merges the trade.data, dynamic.desc, and
static.desc data into one data set, counts the number of NAs in the merged data set, calculates cost and
percent cost, and removes extraneous columns. After performing these operations mergeData passes its
results into a new object of class tradeCostsResults which is discussed above in section 3.

4.3 tradeCostsResults Class

Class tradeCostsResults stores a single data.frame object containing all the stripped down trade data
with cost information. The class also contains methods for calculating summary statistics and generating
the text summary and PDF reports. Its slots are listed and explained in detail below:

� name. A string of the name of this trade costs analysis.

� results. A data.frame of merged and pared down raw data.

� na.counts. A data.frame of counts made of NAs in the raw data

Class tradeCostsResults has two methods which produce end output for the user, summary and pdfsummary.
Method summary calculates and displays a text summary report in the R console. Method pdfsummary gen-
erates the summary PDF reports, both normal and verbose.

5 Conclusion

For those who engage in frequent transactions in financial markets, trade costs can play a pivotal role
in portfolio performance. Institutions and individuals who wish to improve their returns can do so by
understanding and carefully managing the costs incurred during trading. This package provides a set of
tools for generating summaries and reports on a component of trade costs, slippage, from raw trading data.

Jeff Enos, David Kane, Aaron Schwartz, and Luyi Zhao
Kane Capital Management
Cambridge, Massachusetts, USA
jeff@kanecap.com, david@kanecap.com,
aaron.j.schwartz@williams.edu and luyizhao@fas.harvard.edu

References

[1] Robert Kiseel and Morton Glantz. Optimal Trading Strategies. American Management Association, 2003.

9

